This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372028 #73 May 05 2024 19:55:09 %S A372028 3,5,7,11,12,13,15,16,17,18,20,22,24,26,27,28,29,30,31,33,40,41,42,43, %T A372028 44,46,49,50,51,53,55,58,59,60,62,63,64,66,67,68,69,70,71,72,73,78,79, %U A372028 80,92,93,95,98,101,102,103,104,105,107,109,111,112,115,116,117 %N A372028 Numbers k such that A124652(k) divides A372111(k-1). %C A372028 Contains A372009(m), m > 1. %C A372028 For k in this sequence, A124652(k) has the same relationship with A372111(k-1) as A109890(i) has with A109735(i-1) for i > 2. %H A372028 Michael De Vlieger, <a href="/A372028/b372028.txt">Table of n, a(n) for n = 1..10000</a> %H A372028 Michael De Vlieger, <a href="/A372028/a372028.png">Log log scatterplot of A124652(n)</a>, n = 1..10^5, showing A124652(a(n)) in green, but A124652(a(n)) that are prime in red. %F A372028 A124652(a(n)) is a number in row A372111(a(n)-1) of A027750. %e A372028 Let b(x) = A124652(x) and s(x) = A372111(x), where A372111 contains partial sums of A124652. %e A372028 a(1) = 3 since b(3) = 3, a divisor of s(2) = 3. %e A372028 a(2) = 5 since b(5) = 5, a divisor of s(4) = 10. %e A372028 a(3) = 7 since b(7) = 6, a divisor of s(6) = 24, etc. %t A372028 nn = 120; c[_] := False; %t A372028 rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; %t A372028 f[x_] := Select[Range[x], Divisible[x, rad[#]] &]; %t A372028 Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2]; %t A372028 Reap[Do[r = f[s]; k = SelectFirst[r, ! c[#] &]; %t A372028 If[Divisible[s, k], Sow[i]]; c[k] = True; %t A372028 s += k, {i, 3, nn}] ][[-1, 1]] %Y A372028 Cf. A007947, A027750, A109735, A109890, A124652, A372009, A372111, A372399. %K A372028 nonn %O A372028 1,1 %A A372028 _Michael De Vlieger_, May 05 2024