This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372029 #32 Apr 23 2024 11:19:53 %S A372029 12,25,35,111,112,125,222,245,333,335,445,1225,2225,11125,33445, %T A372029 334445,3333335,3334445,3444445,33333445,333333335,334444445, %U A372029 3333333335,33333334445,333333333335,33333333334445,33333333444445,444444444444445,2222222222222225,11111111111111125 %N A372029 For a positive number k, let L(k) denote the list consisting of k followed by the prime factors of k, with repetition, in nondecreasing order; sequence gives composite k such that the digits of L(k) are in nondecreasing order. %C A372029 Terms cannot end in 4, 6, 8, or 9 because 2 would be a factor and no prime consists entirely of 9's. - _Michael S. Branicky_, Apr 22 2024 %H A372029 Michael S. Branicky, <a href="/A372029/b372029.txt">Table of n, a(n) for n = 1..48</a> %H A372029 Michael S. Branicky, <a href="/A372029/a372029_1.txt">Table of n, a(n), and the prime factorization of a(n) for n = 1..48</a> %e A372029 The initial terms and their factorizations are: %e A372029 12 = [2, 2, 3] %e A372029 25 = [5, 5] %e A372029 35 = [5, 7] %e A372029 111 = [3, 37] %e A372029 112 = [2, 2, 2, 2, 7] %e A372029 125 = [5, 5, 5] %e A372029 222 = [2, 3, 37] %e A372029 245 = [5, 7, 7] %e A372029 333 = [3, 3, 37] %e A372029 335 = [5, 67] %e A372029 445 = [5, 89] %e A372029 1225 = [5, 5, 7, 7] %e A372029 2225 = [5, 5, 89] %e A372029 11125 = [5, 5, 5, 89] %e A372029 33445 = [5, 6689] %e A372029 334445 = [5, 66889] %e A372029 3333335 = [5, 666667] %e A372029 3334445 = [5, 666889] %e A372029 3444445 = [5, 688889] %e A372029 33333445 = [5, 6666689] %e A372029 333333335 = [5, 66666667] %e A372029 334444445 = [5, 66888889] %e A372029 ... %e A372029 12 is a term since the list L(12) is [12,2,2,3], in which the digits 1,2,2,2,3 are in nondecreasing order. %e A372029 121 is not a term since L(121) = [121,11,11], and the digits 1,2,1,1,1,1,1 are not in nondecreasing order. %o A372029 (Python) %o A372029 from sympy import factorint, isprime %o A372029 def nd(s): return sorted(s) == list(s) %o A372029 def ok(n): %o A372029 if n < 4 or isprime(n): return False %o A372029 s, f = str(n), "".join(str(p)*e for p, e in factorint(n).items()) %o A372029 return nd(s+f) %o A372029 print([k for k in range(10**5) if ok(k)]) # _Michael S. Branicky_, Apr 22 2024 %o A372029 (Python) # faster for initial segment of sequence %o A372029 from sympy import factorint, isprime %o A372029 from itertools import count, islice, combinations_with_replacement as mc %o A372029 def nd(s): return s == "".join(sorted(s)) %o A372029 def bgen(d): # can't end in 8 or 9 %o A372029 yield from ("".join(m) for m in mc("1234567", d)) %o A372029 def agen(): # generator of terms %o A372029 for d in count(2): %o A372029 for s in bgen(d): %o A372029 t = int(s) %o A372029 if any(s[-1] > c and t%int(c) == 0 for c in "2357"): continue %o A372029 if isprime(t): continue %o A372029 if nd(s+"".join(str(p)*e for p, e in factorint(t).items())): %o A372029 yield t %o A372029 print(list(islice(agen(), 25))) # _Michael S. Branicky_, Apr 22 2024 %Y A372029 Cf. A372053, A372055, A372034. %K A372029 nonn,base %O A372029 1,1 %A A372029 _Scott R. Shannon_, Apr 16 2024 %E A372029 a(25) and beyond from _Michael S. Branicky_, Apr 22 2024