This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372046 #23 May 10 2024 10:59:53 %S A372046 998,1636,9998,15584,49447,99998,1639964,2794612,9999998,15842836, %T A372046 1639360636,1968390098,27879461212,65226742928 %N A372046 Composite numbers that divide the concatenation of the reverse of their ascending order prime factors, with repetition. %C A372046 A number 999...9998 will be a term if it has two prime factors 2 and 4999...999. Therefore 999999999999998 and 999...9998 (with 54 9's) are both terms. See A056712. %C A372046 100000000000 < a(15) <= 999999999999998. _Robert P. P. McKone_, May 07 2024 %e A372046 998 is a term as 998 = 2 * 499 = "2" * "994" when each prime factor is reversed. This gives "2994", and 2994 is divisible by 998. %e A372046 15584 is a term as 15584 = 2 * 2 * 2 * 2 * 2 * 487 = "2" * "2" * "2" * "2" * "2" * "784" when each prime factor is reversed. This gives "22222784", and 22222784 is divisible by 15584. %t A372046 a[n_Integer] := Module[{f}, f = Flatten[ConstantArray @@@ FactorInteger[n]]; If[Length[f] < 2, Return[False]]; Mod[FromDigits[StringJoin[StringReverse[IntegerString[#, 10]] & /@ f], 10], n] == 0]; %t A372046 Select[Range[2, 10^5], a] (* _Robert P. P. McKone_, May 03 2024 *) %o A372046 (Python) %o A372046 from itertools import count, islice %o A372046 from sympy import factorint %o A372046 def A372046_gen(startvalue=4): # generator of terms >= startvalue %o A372046 for n in count(max(startvalue,4)): %o A372046 f = factorint(n) %o A372046 if sum(f.values()) > 1: %o A372046 c = 0 %o A372046 for p in sorted(f): %o A372046 a = pow(10,len(s:=str(p)),n) %o A372046 q = int(s[::-1]) %o A372046 for _ in range(f[p]): %o A372046 c = (c*a+q)%n %o A372046 if not c: %o A372046 yield n %o A372046 A372046_list = list(islice(A372046_gen(),5)) # _Chai Wah Wu_, Apr 24 2024 %Y A372046 Cf. A371696, A371695, A371641, A027746, A056712. %K A372046 nonn,base,more %O A372046 1,1 %A A372046 _Scott R. Shannon_, Apr 17 2024 %E A372046 a(13)-a(14) from _Robert P. P. McKone_, May 05 2024