This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372053 #24 Jun 21 2025 07:54:13 %S A372053 2,3,2,2,4,5,2,3,6,7,2,2,2,2,4,8,3,3,9,2,5,10,11,2,2,3,2,6,3,4,12,13, %T A372053 2,7,14,3,5,15,2,2,2,2,2,2,4,2,8,4,4,16,17,2,3,3,2,9,3,6,18,19,2,2,5, %U A372053 2,10,4,5,20,3,7,21,2,11,22,23,2,2,2,3,2,2,6,2,3,4,2,12,3,8,4,6,24,5,5,25,2,13,26,3,3,3,3,9,27,2,2,7,2,14,4,7,28,29,2,3,5,2,15,3,10,5,6,30 %N A372053 Irregular array read by rows: row n lists the factorizations of n into a product of nondecreasing integers >= 2. %C A372053 Factorizations of n are ordered lexicographically. Compare A162247. %H A372053 Michael De Vlieger, <a href="/A372053/b372053.txt">Table of n, a(n) for n = 2..19795</a> (rows n = 1..1000, flattened) %e A372053 The factorizations of the numbers 2 through 24 are: %e A372053 2; %e A372053 3; %e A372053 2, 2; 4; %e A372053 5; %e A372053 2, 3; 6; %e A372053 7; %e A372053 2, 2, 2; 2, 4; 8; %e A372053 3, 3; 9; %e A372053 2, 5; 10; %e A372053 11; %e A372053 2, 2, 3; 2, 6; 3, 4; 12; %e A372053 13; %e A372053 2, 7; 14; %e A372053 3, 5; 15; %e A372053 2, 2, 2, 2; 2, 2, 4; 2, 8; 4, 4; 16; %e A372053 17; %e A372053 2, 3, 3; 2, 9; 3, 6; 18; %e A372053 19; %e A372053 2, 2, 5; 2, 10; 4, 5; 20; %e A372053 3, 7; 21; %e A372053 2, 11; 22; %e A372053 23; %e A372053 2, 2, 2, 3; 2, 2, 6; 2, 3, 4; 2, 12; 3, 8; 4, 6; 24; %t A372053 f[x_] := If[x <= 1, {{}}, Join @@ Table[Map[Prepend[#, d] &, Select[f[x/d], Min @@ # >= d &]], {d, Rest@ Divisors[x]}]]; Array[Flatten @* f, 29, 2] // Flatten (* _Michael De Vlieger_, Apr 22 2024 *) %Y A372053 Cf. A001055, A027746, A066637 (row lengths), A162247. %K A372053 nonn,tabf,easy %O A372053 2,1 %A A372053 _N. J. A. Sloane_, Apr 22 2024, following a suggestion from _Scott R. Shannon_ %E A372053 The DATA section is longer than usual in order to show the factorizations of 30. %E A372053 Edited by _Peter Munn_, Feb 26 2025