A372066 Array read by antidiagonals: T(m,n) (m >= 1, n >= 1) = number of reduced connected row convex (RCRC) constraints between an m-element set and an n-element set.
1, 1, 1, 1, 7, 1, 1, 17, 17, 1, 1, 31, 90, 31, 1, 1, 49, 284, 284, 49, 1, 1, 71, 687, 1398, 687, 71, 1, 1, 97, 1411, 4861, 4861, 1411, 97, 1, 1, 127, 2592, 13555, 23020, 13555, 2592, 127, 1, 1, 161, 4390, 32436, 83858, 83858, 32436, 4390, 161, 1
Offset: 1
Examples
The initial antidiagonals are: 1, 1, 1, 1, 7, 1, 1, 17, 17, 1, 1, 31, 90, 31, 1, 1, 49, 284, 284, 49, 1, 1, 71, 687, 1398, 687, 71, 1, 1, 97, 1411, 4861, 4861, 1411, 97, 1, 1, 127, 2592, 13555, 23020, 13555, 2592, 127, 1, 1, 161, 4390, 32436, 83858, 83858, 32436, 4390, 161, 1, ... The array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 7, 17, 31, 49, 71, 97, 127, 161, ... 1, 17, 90, 284, 687, 1411, 2592, 4390, 6989, ... 1, 31, 284, 1398, 4861, 13555, 32436, 69350, 135985, ... 1, 49, 687, 4861, 23020, 83858, 253876, 669660, 1587491, ... 1, 71, 1411, 13555, 83858, 386774, 1445748, 4613486, 13010537, ... 1, 97, 2592, 32436, 253876, 1445748, 6539320, 24831150, 82162821, ... 1, 127, 4390, 69350, 669660, 4613486, 24831150, 110639796, 424473531, ... 1, 161, 6989, 135985, 1587491, 13010537, 82162821, 424473531, 1868934548, ... ...
References
- Yves Deville, Olivier Barette, Pascal Van Hentenryck, Constraint satisfaction over connected row-convex constraints, Artificial Intelligence 109 (1999), 243-271.
- Peter Jeavons, David Cohen, Martin C. Cooper, Constraints, consistency and closure". Artificial Intelligence 101 (1998), 251-265.
Links
Formula
Knuth gives a formula expressing the array A372367 in terms of the current array. He also reports that there is strong experimental evidence that the n-th term of row m in the current array is a polynomial of degree 2*m-2 in n.
Comments