This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372084 #19 Apr 27 2024 16:27:03 %S A372084 1,1,14,122190,4154515368024,1835278052687560517522520, %T A372084 26375779571296696625528695444035039796080, %U A372084 25932533306693349690666903275634586837883421559437937952074800,3259525010466811026507391843042719132975543560928683870154345751824625274129141118944640 %N A372084 Number of acyclic orientations of the Turán graph T(n^2,n). %C A372084 The Turán graph T(n^2,n) is the complete n-partite graph K_{n,...,n}. %C A372084 An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1. %H A372084 Alois P. Heinz, <a href="/A372084/b372084.txt">Table of n, a(n) for n = 0..21</a> %H A372084 Richard P. Stanley, <a href="http://dx.doi.org/10.1016/0012-365X(73)90108-8">Acyclic Orientations of Graphs</a>, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8 %H A372084 Wikipedia, <a href="https://en.wikipedia.org/wiki/Acyclic_orientation">Acyclic orientation</a> %H A372084 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multipartite_graph">Multipartite graph</a> %H A372084 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tur%C3%A1n_graph">Turán graph</a> %F A372084 a(n) = A267383(n^2,n). %Y A372084 Main diagonal of A372326. %Y A372084 Cf. A267383. %K A372084 nonn %O A372084 0,3 %A A372084 _Alois P. Heinz_, Apr 17 2024