cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372092 Numbers k where records occur for d(k)/d(k+1), where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 240, 420, 1008, 1320, 1800, 2160, 2520, 6300, 7560, 12600, 15120, 20160, 30240, 45360, 55440, 100800, 110880, 196560, 332640, 498960, 786240, 982800, 1108800, 1580040, 1940400, 1995840, 2402400, 3880800, 4324320, 11476080, 11531520
Offset: 1

Views

Author

Amiram Eldar, Apr 18 2024

Keywords

Comments

This sequence is infinite (Schinzel, 1954).
Is a(n) = A103199(n) - 1?
From Michael De Vlieger, Apr 19 2024: (Start)
a(12) = 1008 = 2^4 * 3^2 * 7 is the smallest term that is not a product of primorials.
a(36) = 2402400 = 2^5 * 3^1 * 5^2 * 7 * 11 * 13 is the smallest term whose exponents are not nonincreasing as prime base increases (ignoring interposing nondivisor primes). (End)

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{d1 = 1, d2, rm = 0, r, s = {}}, Do[d2 = DivisorSigma[0, k]; r = d1 / d2; If[r > rm, rm = r; AppendTo[s, k-1]]; d1 = d2, {k, 2, kmax}]; s]; seq[10^6]
  • PARI
    lista(kmax) = {my(d1 = 1, d2, rm = 0, r); for(k = 2, kmax, d2 = numdiv(k); r = d1 / d2; if(r > rm, rm = r; print1(k-1, ", ")); d1 = d2);}