This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372106 #43 Apr 22 2024 13:50:49 %S A372106 1476395008,116508327936,505627938816,640532803911,1207460451879, %T A372106 1429150367744,1458956660623,3292564845031,3820372951296, %U A372106 5056734498816,6784304541696,8090702381056,9095331446784,10757095489536,10973607685048,13505488366293,14913065975808,38203732951296 %N A372106 A370972 terms composed of nine distinct digits which may repeat. %C A372106 Each factorization is necessarily composed of multipliers that use only the single missing digit. %C A372106 The single missing digit cannot be 0, 1, 5, or 6. Terms missing 2, 3, 4, 7, and 8 appear within a(1)-a(6). 52612606387341 = 9^6 * 99 * 999999 is an example of a term missing 9. - _Michael S. Branicky_, Apr 18 2024 %C A372106 Some terms are equal to the sum of two distinct smaller terms: %C A372106 a(741) = a(635) + a(673) %C A372106 a(1202) = a(1081) + a(1144) %C A372106 a(1273) = a(1110) + a(1169) %C A372106 a(1493) = a(1335) + a(1374) %C A372106 a(2753) = a(2478) + a(2528) %C A372106 a(2793) = a(2512) + a(2583) %C A372106 a(3581) = a(3234) + a(3317) %C A372106 a(4199) = a(3808) + a(3921) %C A372106 a(4803) = a(4510) + a(4607) = a(4557) + a(4568) %C A372106 a(5756) = a(5256) + a(5362) %C A372106 a(6083) = a(5718) + a(5847) %C A372106 a(7262) = a(6761) + a(6779) %C A372106 a(7331) = a(6786) + a(6904) %C A372106 a(9204) = a(8723) + a(8886) %C A372106 a(9364) = a(8858) + a(8982) %C A372106 a(9453) = a(8972) + a(8983) - _Hans Havermann_, Apr 21 2024 %H A372106 Michael S. Branicky, <a href="/A372106/b372106.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1016 from Hans Havermann) %H A372106 Michael S. Branicky and Hans Havermann, <a href="/A372106/a372106.txt">Table of n, a(n) for n = 1..10000, fully factored</a> %e A372106 10973607685048 = 22222*22222*22222 is in the sequence because it has nine distinct digits and may be factored using only its missing digit. %o A372106 (Python) %o A372106 import heapq %o A372106 from itertools import islice %o A372106 def agen(): # generator of terms %o A372106 allowed = [2, 3, 4, 7, 8, 9] %o A372106 v, oldt, h, repunits, bigr = 1, 0, list((d, d) for d in allowed), [1], 1 %o A372106 while True: %o A372106 v, d = heapq.heappop(h) %o A372106 if (v, d) != oldt: %o A372106 s = set(str(v)) %o A372106 if len(s) == 9 and str(d) not in s: %o A372106 yield v %o A372106 oldt = (v, d) %o A372106 while v > bigr: %o A372106 bigr = 10*bigr + 1 %o A372106 repunits.append(bigr) %o A372106 for c in allowed: %o A372106 heapq.heappush(h, (bigr*c, c)) %o A372106 for r in repunits: %o A372106 heapq.heappush(h, (v*d*r, d)) %o A372106 print(list(islice(agen(), 100))) # _Michael S. Branicky_, Apr 19 2024 %Y A372106 Cf. A370970, A370972. %K A372106 nonn,base %O A372106 1,1 %A A372106 _Hans Havermann_, Apr 18 2024