cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372106 A370972 terms composed of nine distinct digits which may repeat.

This page as a plain text file.
%I A372106 #43 Apr 22 2024 13:50:49
%S A372106 1476395008,116508327936,505627938816,640532803911,1207460451879,
%T A372106 1429150367744,1458956660623,3292564845031,3820372951296,
%U A372106 5056734498816,6784304541696,8090702381056,9095331446784,10757095489536,10973607685048,13505488366293,14913065975808,38203732951296
%N A372106 A370972 terms composed of nine distinct digits which may repeat.
%C A372106 Each factorization is necessarily composed of multipliers that use only the single missing digit.
%C A372106 The single missing digit cannot be 0, 1, 5, or 6. Terms missing 2, 3, 4, 7, and 8 appear within a(1)-a(6). 52612606387341 = 9^6 * 99 * 999999 is an example of a term missing 9. - _Michael S. Branicky_, Apr 18 2024
%C A372106 Some terms are equal to the sum of two distinct smaller terms:
%C A372106 a(741) = a(635) + a(673)
%C A372106 a(1202) = a(1081) + a(1144)
%C A372106 a(1273) = a(1110) + a(1169)
%C A372106 a(1493) = a(1335) + a(1374)
%C A372106 a(2753) = a(2478) + a(2528)
%C A372106 a(2793) = a(2512) + a(2583)
%C A372106 a(3581) = a(3234) + a(3317)
%C A372106 a(4199) = a(3808) + a(3921)
%C A372106 a(4803) = a(4510) + a(4607) = a(4557) + a(4568)
%C A372106 a(5756) = a(5256) + a(5362)
%C A372106 a(6083) = a(5718) + a(5847)
%C A372106 a(7262) = a(6761) + a(6779)
%C A372106 a(7331) = a(6786) + a(6904)
%C A372106 a(9204) = a(8723) + a(8886)
%C A372106 a(9364) = a(8858) + a(8982)
%C A372106 a(9453) = a(8972) + a(8983) - _Hans Havermann_, Apr 21 2024
%H A372106 Michael S. Branicky, <a href="/A372106/b372106.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1016 from Hans Havermann)
%H A372106 Michael S. Branicky and Hans Havermann, <a href="/A372106/a372106.txt">Table of n, a(n) for n = 1..10000, fully factored</a>
%e A372106 10973607685048 = 22222*22222*22222 is in the sequence because it has nine distinct digits and may be factored using only its missing digit.
%o A372106 (Python)
%o A372106 import heapq
%o A372106 from itertools import islice
%o A372106 def agen(): # generator of terms
%o A372106     allowed = [2, 3, 4, 7, 8, 9]
%o A372106     v, oldt, h, repunits, bigr = 1, 0, list((d, d) for d in allowed), [1], 1
%o A372106     while True:
%o A372106         v, d = heapq.heappop(h)
%o A372106         if (v, d) != oldt:
%o A372106             s = set(str(v))
%o A372106             if len(s) == 9 and str(d) not in s:
%o A372106                 yield v
%o A372106             oldt = (v, d)
%o A372106             while v > bigr:
%o A372106                 bigr = 10*bigr + 1
%o A372106                 repunits.append(bigr)
%o A372106                 for c in allowed:
%o A372106                     heapq.heappush(h, (bigr*c, c))
%o A372106             for r in repunits:
%o A372106                 heapq.heappush(h, (v*d*r, d))
%o A372106 print(list(islice(agen(), 100))) # _Michael S. Branicky_, Apr 19 2024
%Y A372106 Cf. A370970, A370972.
%K A372106 nonn,base
%O A372106 1,1
%A A372106 _Hans Havermann_, Apr 18 2024