This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372113 #27 May 19 2024 06:35:26 %S A372113 5,11,15,23,35,39,63,75,83,95,119,135,179,215,219,299,303,315,359,363, %T A372113 455,459,483,515,543,615,663,699,719,735,779,803,879,915,923,935,975, %U A372113 999,1019,1043,1143,1155,1175,1199,1295,1323,1355,1383,1439,1539,1595,1659,1679,1755,1763,1815,1859,1883 %N A372113 Numbers k for which (k-1)/2 and 2*k+1 are both primes. %C A372113 Intersection of A072055 and A104635. %H A372113 Michael De Vlieger, <a href="/A372113/b372113.txt">Table of n, a(n) for n = 1..10000</a> %F A372113 a(n) = 2*A023213(n) + 1. %F A372113 a(n) = (A126330(n)-1)/2. %e A372113 5 is a term because (5-1)/2 = 2 is prime and 2*5+1 = 11 is prime. %t A372113 Select[Range[1, 2000, 2], AllTrue[{(# - 1)/2, 2 # + 1}, PrimeQ] &] (* _Michael De Vlieger_, Apr 19 2024 *) %o A372113 (Python) %o A372113 from sympy import isprime %o A372113 def a(n): return n%2 == 1 and isprime((n-1)>>1) and isprime(2*n+1) %o A372113 print([n for n in range(2, 1900) if a(n)]) %Y A372113 Cf. A072055, A104635. %Y A372113 Cf. A023213, A126330. %K A372113 nonn %O A372113 1,1 %A A372113 _Alexandre Herrera_, Apr 19 2024