This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372118 #32 Jul 10 2024 10:00:45 %S A372118 1,3,1,7,6,1,15,25,9,1,31,90,55,12,1,63,301,285,97,15,1,127,966,1351, %T A372118 660,151,18,1,255,3025,6069,4081,1275,217,21,1,511,9330,26335,23772, %U A372118 9751,2190,295,24,1,1023,28501,111645,133057,70035,19981,3465,385,27,1 %N A372118 Square array A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2 for k, n >= 0 read by ascending antidiagonals. %C A372118 Depending on some fixed integer m >= 0 we define a family of square arrays A(m; n, k) = (Sum_{i=0..m} (-1)^i * binomial(m, i) * (k + m - i)^(n+m)) / m! for k, n >= 0. Special cases are: A004248 (m=0), A343237 (m=1) and this array (m=2). The A(m; n, k) satisfy: A(m; n, k) = (k+m) * A(m; n-1, k) + A(m-1; n, k) with initial values A(0; n, k) = k^n and A(m; 0, k) = 1. %C A372118 Further properties are conjectures: %C A372118 (1) O.g.f. of column k is Prod_{i=k..k+m} 1 / (1 - i * t); %C A372118 (2) E.g.f. of row n is exp(x) * (Sum_{k=0..n} binomial(k+m, m) * A048993(n+m, k+m) * x^k); %C A372118 (3) The LU decompositions of these arrays are given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(m; n, k) = A048993(n+m, k+m) * (k+m)! / m!, i.e., A(m; n, k) = Sum_{i=0..k} L(m; n, i) * binomial(k, i). %C A372118 The three conjectures are true, see links. - _Sela Fried_, Jul 07 2024 %H A372118 Paolo Xausa, <a href="/A372118/b372118.txt">Table of n, a(n) for n = 0..11324</a> (first 150 antidiagonals, flattened). %H A372118 Sela Fried, <a href="/A372118/a372118_3.pdf">On an integer sequence related to Euler's formula for the Stirling numbers of the second kind</a>, 2024. %F A372118 A(n, k) = (k+2) * A(n-1, k) + (k+1)^(n+1) - k^(n+1) for n > 0. %F A372118 Conjectures: %F A372118 (1) O.g.f. of column k is Prod_{i=k..k+2} 1 / (1 - i * t); %F A372118 (2) E.g.f. of row n is exp(x) * (Sum_{k=0..n} binomial(k+2, 2) * A048993(n+2, k+2) * x^k); %F A372118 (3) The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A048993(n+2, k+2) * (k+2)! / 2!, i.e., A(n, k) = Sum_{i=0..k} L(n, i) * binomial(k, i). %F A372118 The three conjectures are true. See comments. - _Sela Fried_, Jul 09 2024 %e A372118 Square array A(n, k) starts: %e A372118 n\k : 0 1 2 3 4 5 6 7 %e A372118 ======================================================================= %e A372118 0 : 1 1 1 1 1 1 1 1 %e A372118 1 : 3 6 9 12 15 18 21 24 %e A372118 2 : 7 25 55 97 151 217 295 385 %e A372118 3 : 15 90 285 660 1275 2190 3465 5160 %e A372118 4 : 31 301 1351 4081 9751 19981 36751 62401 %e A372118 5 : 63 966 6069 23772 70035 170898 365001 706104 %e A372118 6 : 127 3025 26335 133057 481951 1398097 3463615 7628545 %e A372118 7 : 255 9330 111645 724260 3216795 11075670 31794105 79669320 %e A372118 etc. %t A372118 A372118[n_, k_] := ((k+2)^(n+2) - 2*(k+1)^(n+2) + k^(n+2))/2; %t A372118 Table[A372118[n-k, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Jul 10 2024 *) %o A372118 (PARI) A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2 %Y A372118 Rows: A000012 (n=0), A008585 (n=1), A227776 (n=2). %Y A372118 Columns: A000225 (k=0), A000392 (k=1), A016269 (k=2), A016753 (k=3), A016103 (k=4), A019757 (k=5), A020570 (k=6), A020782 (k=7). %Y A372118 Main diagonal: A281596(n+2). %Y A372118 Cf. A007318, A048993, A004248, A343237. %K A372118 nonn,easy,tabl %O A372118 0,2 %A A372118 _Werner Schulte_, Apr 19 2024