cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372126 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)*(1 + 9*x*A(x))^(1/3) ).

This page as a plain text file.
%I A372126 #15 Nov 30 2024 08:50:05
%S A372126 1,1,5,11,95,150,2688,-111,98489,-215578,4416842,-18887063,230670421,
%T A372126 -1356589436,13381147908,-92724422022,831047516316,-6277471705749,
%U A372126 53925750947589,-426682784513559,3602138266461603,-29250145766625450,245524688963062050
%N A372126 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)*(1 + 9*x*A(x))^(1/3) ).
%H A372126 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A372126 a(n) = (1/(n+1)) * Sum_{k=0..n} 9^(n-k) * binomial(n+k,k) * binomial(k/3,n-k).
%F A372126 From _Seiichi Manyama_, Nov 30 2024: (Start)
%F A372126 G.f.: exp( Sum_{k>=1} A378555(k) * x^k/k ).
%F A372126 a(n) = (1/(n+1)) * [x^n] 1/(1 - x*(1 + 9*x)^(1/3))^(n+1).
%F A372126 G.f.: (1/x) * Series_Reversion( x*(1 - x*(1 + 9*x)^(1/3)) ). (End)
%o A372126 (PARI) a(n) = sum(k=0, n, 9^(n-k)*binomial(n+k, k)*binomial(k/3, n-k))/(n+1);
%Y A372126 Cf. A001002, A372125.
%Y A372126 Cf. A372013, A372136, A378555.
%K A372126 sign
%O A372126 0,3
%A A372126 _Seiichi Manyama_, Apr 20 2024