A372135 Nonsquarefree numbers not in A225353; equivalently, nonsquarefree numbers in A225354.
12, 60, 84, 132, 156, 204, 228, 276, 348, 372, 420, 444, 492, 516, 564, 636, 660, 708, 732, 780, 804, 852, 876, 924, 948, 996, 1020, 1068, 1092, 1140, 1164, 1212, 1236, 1284, 1308, 1356, 1380, 1428, 1524, 1540, 1572, 1596, 1644, 1668, 1716, 1740, 1788, 1812, 1820
Offset: 1
Keywords
Examples
12 is a term since 12 = 2^2*3 and 12 = 1 + 2 + 3 + 6.
Crossrefs
Programs
-
Maple
filter:= proc(n) local P,z,d; if numtheory:-issqrfree(n) then return false fi; P:= mul(1+z^d, d = select(numtheory:-issqrfree,numtheory:-divisors(n))); coeff(P,z,n) > 0 end proc: select(filter, [$1..2000]); # Robert Israel, Apr 21 2024
-
Mathematica
filter[n_] := Module[{P, z, d}, If[SquareFreeQ[n], Return[False]]; P = Product[1 + z^d, {d, Select[Divisors[n], SquareFreeQ]}]; Coefficient[P, z, n] > 0]; Select[Range[2000], If[filter[#], Print[#]; True, False]&] (* Jean-François Alcover, May 28 2024, after Robert Israel *)
Comments