This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372151 #11 Apr 29 2024 09:30:15 %S A372151 35,333,335,445,33445,334445,3333335,3334445,3444445,33333445, %T A372151 333333335,334444445,3333333335,33333334445,333333333335, %U A372151 33333333334445,33333333444445,444444444444445,333333334444444445,333334444444444445,444444444444444445,3333333333333444445 %N A372151 For a positive number k, let L(k) denote the list consisting of k followed by the prime factors of k, with repetition, in nondecreasing order; sequence gives composite k such that the digits of k is either 3, 4 or 5 and the digits of L(k) are in nondecreasing order. %C A372151 Subsequence of A372029. Sequence is inspired by the observation that most terms in A372029 so far contain only the digits 3, 4 and 5. %H A372151 Chai Wah Wu, <a href="/A372151/b372151.txt">Table of n, a(n) for n = 1..71</a> %e A372151 35 = 5*7 %e A372151 333 = 3*3*37 %e A372151 335 = 5*67 %e A372151 445 = 5*89 %e A372151 33445 = 5*6689 %e A372151 333333333333333333333333444444444444444444444445 = 5*66666666666666666666666688888888888888888888889 %o A372151 (Python) %o A372151 from itertools import count, islice, combinations_with_replacement %o A372151 from sympy import isprime, factorint %o A372151 def A372151_gen(): # generator of terms %o A372151 for l in count(1): %o A372151 for d in combinations_with_replacement('345',l): %o A372151 a, n = d[-1], int(''.join(d)) %o A372151 if not isprime(n): %o A372151 for p in factorint(n,multiple=True): %o A372151 s = str(p) %o A372151 if s[0] < a or sorted(s) != list(s): %o A372151 break %o A372151 a = s[-1] %o A372151 else: %o A372151 yield n %o A372151 A372151_list = list(islice(A372151_gen(),20)) %Y A372151 Cf. A372053, A372055, A372034, A372029. %K A372151 nonn,base %O A372151 1,1 %A A372151 _Chai Wah Wu_, Apr 26 2024