cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372153 Irregular triangular array read by rows. T(n,k) is the number of simple labeled graphs on [n] with circuit rank equal to k, n >= 1, 0 <= k <= binomial(n-1,2).

This page as a plain text file.
%I A372153 #26 Jun 09 2025 20:24:29
%S A372153 1,2,7,1,38,19,6,1,291,317,235,125,45,10,1,2932,5582,7120,6915,5215,
%T A372153 3057,1371,455,105,15,1,36961,108244,207130,306775,368046,364539,
%U A372153 300342,205940,116910,54362,20356,5985,1330,210,21,1,561948,2331108,6176387,12709760
%N A372153 Irregular triangular array read by rows.  T(n,k) is the number of simple labeled graphs on [n] with circuit rank equal to k, n >= 1, 0 <= k <= binomial(n-1,2).
%C A372153 The circuit rank r(G) of a simple graph G is the minimum number of edges that must be removed to break all of its cycles.  r(G) = m - n + c where m,n,c are the number of edges, vertices, and connected components respectively of G.
%C A372153 Equivalently, T(n,k) is the number of simple labeled graphs on [n] such that the incidence matrix has nullity equal to k where the incidence matrix is viewed as a matrix with entries in the field GF(2).
%D A372153 R. Diestel, Graph Theory, Springer, 2017, pp. 23-27.
%H A372153 Andrew Howroyd, <a href="/A372153/b372153.txt">Table of n, a(n) for n = 1..1160</a> (rows 1..20)
%H A372153 Wikipedia, <a href="http://en.wikipedia.org/wiki/Circuit_rank">Circuit rank</a>.
%H A372153 Wikipedia, <a href="http://en.wikipedia.org/wiki/Incidence_matrix">Incidence matrix</a>.
%F A372153 T(n,0) = A001858(n).
%F A372153 E.g.f. for T(n,1): f(x)*g(x) where f(x) is the e.g.f. for A001858 and g(x) is the e.g.f. for A057500.
%F A372153 E.g.f.: exp(y*log(Sum_{k>=0} (1+y)^binomial(k,2)*(x/y)^k/k!)). - _Andrew Howroyd_, Jun 09 2025
%e A372153 Triangle T(n,k) begins:
%e A372153      1;
%e A372153      2;
%e A372153      7,    1;
%e A372153     38,   19,    6,    1;
%e A372153    291,  317,  235,  125,   45,   10,   1;
%e A372153   2932, 5582, 7120, 6915, 5215, 3057, 1371, 455, 105, 15, 1;
%e A372153   ...
%t A372153 Needs["Combinatorica`"]; Map[Select[#, # > 0 &] &, Transpose[ Table[ Table[ Total[ Map[#[[1]] &,Select[Table[{n!/GraphData[{n, i}, "AutomorphismCount"], GraphData[{n, i}, "CyclomaticNumber"]}, {i, 1, NumberOfGraphs[n]}], #[[2]] == k &]]], {n, 1, 7}], {k, 0, 15}]]] // Grid
%o A372153 (PARI) T(n)={[Vecrev(p)| p<-Vec(-1+serlaplace(exp(y*log(sum(k=0, n, (1+y)^binomial(k,2)*x^k/k!/y^k, O(x*x^n))))))]}
%o A372153 { foreach(T(7), row, print(row)) } \\ _Andrew Howroyd_, Jun 09 2025
%Y A372153 Cf. A001858, A057500.
%K A372153 nonn,tabf
%O A372153 1,2
%A A372153 _Geoffrey Critzer_, Apr 20 2024
%E A372153 More terms from _Andrew Howroyd_, Jun 09 2025