cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372164 E.g.f. A(x) satisfies A(x) = exp( 2 * x * A(x)^(5/2) * (1 + x * A(x)) ).

This page as a plain text file.
%I A372164 #11 Apr 21 2024 11:48:39
%S A372164 1,2,28,746,30344,1668762,116000044,9760665434,964821252528,
%T A372164 109605653026802,14072453189095124,2015280776336738418,
%U A372164 318501367837803765640,55067060355743834423690,10339257411931121356190652,2095051036885575920328492938,455698493422117961626699815776
%N A372164 E.g.f. A(x) satisfies A(x) = exp( 2 * x * A(x)^(5/2) * (1 + x * A(x)) ).
%F A372164 E.g.f.: A(x) = B(x)^2 where B(x) is the e.g.f. of A372182.
%F A372164 If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s ), then a(n) = r * n! * Sum_{k=0..n} (t*k+u*(n-k)+r)^(k-1) * binomial(s*k,n-k)/k!.
%o A372164 (PARI) a(n, r=2, s=1, t=5, u=2) = r*n!*sum(k=0, n, (t*k+u*(n-k)+r)^(k-1)*binomial(s*k, n-k)/k!);
%Y A372164 Cf. A371574, A372165, A372182.
%K A372164 nonn
%O A372164 0,2
%A A372164 _Seiichi Manyama_, Apr 21 2024