This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372167 #12 Dec 29 2024 19:19:44 %S A372167 1,0,1,3,1,22,12,6,0,1,237,220,165,70,35,30,0,10,0,0,1,3961,5460,5830, %T A372167 4140,2805,2112,1230,720,600,180,230,60,45,60,0,0,15,0,0,0,1,99900, %U A372167 191975,269220,272055,240485,207095,166005,121530,98770,65905,48503,37065,20055,17570,11445,6552,4410,3570,1680,1785,147,735,455,140,0,105,105,0,0,0,21,0,0,0,0,1 %N A372167 Irregular triangle read by rows where T(n,k) is the number of simple graphs covering n vertices with exactly k triangles, 0 <= k <= binomial(n,3). %H A372167 Andrew Howroyd, <a href="/A372167/b372167.txt">Table of n, a(n) for n = 0..340</a> (rows 0..10) %H A372167 Gus Wiseman, <a href="/A372167/a372167.png">All simple graphs covering {1,2,3,4} grouped by number of triangles</a>. %F A372167 Inverse binomial transform of columns of A372170. %e A372167 Triangle begins: %e A372167 1 %e A372167 0 %e A372167 1 %e A372167 3 1 %e A372167 22 12 6 0 1 %e A372167 237 220 165 70 35 30 0 10 0 0 1 %e A372167 ... %e A372167 Row k = 4 counts the following graphs: %e A372167 12-34 12-13-14-23 12-13-14-23-24 . 12-13-14-23-24-34 %e A372167 13-24 12-13-14-24 12-13-14-23-34 %e A372167 14-23 12-13-14-34 12-13-14-24-34 %e A372167 12-13-14 12-13-23-24 12-13-23-24-34 %e A372167 12-13-24 12-13-23-34 12-14-23-24-34 %e A372167 12-13-34 12-14-23-24 13-14-23-24-34 %e A372167 12-14-23 12-14-24-34 %e A372167 12-14-34 12-23-24-34 %e A372167 12-23-24 13-14-23-34 %e A372167 12-23-34 13-14-24-34 %e A372167 12-24-34 13-23-24-34 %e A372167 13-14-23 14-23-24-34 %e A372167 13-14-24 %e A372167 13-23-24 %e A372167 13-23-34 %e A372167 13-24-34 %e A372167 14-23-24 %e A372167 14-23-34 %e A372167 14-24-34 %e A372167 12-13-24-34 %e A372167 12-14-23-34 %e A372167 13-14-23-24 %t A372167 cys[y_]:=Select[Subsets[Union@@y,{3}], MemberQ[y,{#[[1]],#[[2]]}] && MemberQ[y,{#[[1]],#[[3]]}] && MemberQ[y,{#[[2]],#[[3]]}]&]; %t A372167 Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[cys[#]]==k&]], {n,0,5},{k,0,Binomial[n,3]}] %Y A372167 Row sums are A006129, unlabeled A002494. %Y A372167 Row lengths are A050407. %Y A372167 Counting edges instead of triangles gives A054548, unlabeled A370167. %Y A372167 Column k = 0 is A372168 (non-covering A213434), unlabeled A372169. %Y A372167 Covering case of A372170, unlabeled A263340. %Y A372167 Column k = 1 is A372171 (non-covering A372172), unlabeled A372174. %Y A372167 The unlabeled version is A372173. %Y A372167 For all cycles (not just triangles) we have A372175, non-covering A372176. %Y A372167 A001858 counts acyclic graphs, unlabeled A005195. %Y A372167 A006125 counts simple graphs, unlabeled A000088. %Y A372167 A105784 counts acyclic covering graphs, unlabeled A144958. %Y A372167 Cf. A000272, A053530, A121251, A137916, A367868, A369199, A372191. %K A372167 nonn,tabf %O A372167 0,4 %A A372167 _Gus Wiseman_, Apr 23 2024 %E A372167 a(42) onwards from _Andrew Howroyd_, Dec 29 2024