cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372167 Irregular triangle read by rows where T(n,k) is the number of simple graphs covering n vertices with exactly k triangles, 0 <= k <= binomial(n,3).

This page as a plain text file.
%I A372167 #12 Dec 29 2024 19:19:44
%S A372167 1,0,1,3,1,22,12,6,0,1,237,220,165,70,35,30,0,10,0,0,1,3961,5460,5830,
%T A372167 4140,2805,2112,1230,720,600,180,230,60,45,60,0,0,15,0,0,0,1,99900,
%U A372167 191975,269220,272055,240485,207095,166005,121530,98770,65905,48503,37065,20055,17570,11445,6552,4410,3570,1680,1785,147,735,455,140,0,105,105,0,0,0,21,0,0,0,0,1
%N A372167 Irregular triangle read by rows where T(n,k) is the number of simple graphs covering n vertices with exactly k triangles, 0 <= k <= binomial(n,3).
%H A372167 Andrew Howroyd, <a href="/A372167/b372167.txt">Table of n, a(n) for n = 0..340</a> (rows 0..10)
%H A372167 Gus Wiseman, <a href="/A372167/a372167.png">All simple graphs covering {1,2,3,4} grouped by number of triangles</a>.
%F A372167 Inverse binomial transform of columns of A372170.
%e A372167 Triangle begins:
%e A372167     1
%e A372167     0
%e A372167     1
%e A372167     3    1
%e A372167    22   12    6    0    1
%e A372167   237  220  165   70   35   30    0   10    0    0    1
%e A372167   ...
%e A372167 Row k = 4 counts the following graphs:
%e A372167   12-34      12-13-14-23  12-13-14-23-24  .  12-13-14-23-24-34
%e A372167   13-24      12-13-14-24  12-13-14-23-34
%e A372167   14-23      12-13-14-34  12-13-14-24-34
%e A372167   12-13-14   12-13-23-24  12-13-23-24-34
%e A372167   12-13-24   12-13-23-34  12-14-23-24-34
%e A372167   12-13-34   12-14-23-24  13-14-23-24-34
%e A372167   12-14-23   12-14-24-34
%e A372167   12-14-34   12-23-24-34
%e A372167   12-23-24   13-14-23-34
%e A372167   12-23-34   13-14-24-34
%e A372167   12-24-34   13-23-24-34
%e A372167   13-14-23   14-23-24-34
%e A372167   13-14-24
%e A372167   13-23-24
%e A372167   13-23-34
%e A372167   13-24-34
%e A372167   14-23-24
%e A372167   14-23-34
%e A372167   14-24-34
%e A372167   12-13-24-34
%e A372167   12-14-23-34
%e A372167   13-14-23-24
%t A372167 cys[y_]:=Select[Subsets[Union@@y,{3}], MemberQ[y,{#[[1]],#[[2]]}] && MemberQ[y,{#[[1]],#[[3]]}] && MemberQ[y,{#[[2]],#[[3]]}]&];
%t A372167 Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[cys[#]]==k&]], {n,0,5},{k,0,Binomial[n,3]}]
%Y A372167 Row sums are A006129, unlabeled A002494.
%Y A372167 Row lengths are A050407.
%Y A372167 Counting edges instead of triangles gives A054548, unlabeled A370167.
%Y A372167 Column k = 0 is A372168 (non-covering A213434), unlabeled A372169.
%Y A372167 Covering case of A372170, unlabeled A263340.
%Y A372167 Column k = 1 is A372171 (non-covering A372172), unlabeled A372174.
%Y A372167 The unlabeled version is A372173.
%Y A372167 For all cycles (not just triangles) we have A372175, non-covering A372176.
%Y A372167 A001858 counts acyclic graphs, unlabeled A005195.
%Y A372167 A006125 counts simple graphs, unlabeled A000088.
%Y A372167 A105784 counts acyclic covering graphs, unlabeled A144958.
%Y A372167 Cf. A000272, A053530, A121251, A137916, A367868, A369199, A372191.
%K A372167 nonn,tabf
%O A372167 0,4
%A A372167 _Gus Wiseman_, Apr 23 2024
%E A372167 a(42) onwards from _Andrew Howroyd_, Dec 29 2024