This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372168 #10 Feb 16 2025 08:34:06 %S A372168 1,0,1,3,22,237,3961,99900,3757153,208571691,16945953790, %T A372168 1999844518737,340422874696873,83041703920313712,28850117307732482737, %U A372168 14191512425207950473867,9829313296102303971441502 %N A372168 Number of triangle-free simple labeled graphs covering n vertices. %C A372168 The unlabeled version is A372169. %H A372168 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Triangle-FreeGraph.html">Triangle-Free Graph</a> %F A372168 Binomial transform is A213434. %e A372168 The a(4) = 22 graphs are: %e A372168 12-34 %e A372168 13-24 %e A372168 14-23 %e A372168 12-13-14 %e A372168 12-13-24 %e A372168 12-13-34 %e A372168 12-14-23 %e A372168 12-14-34 %e A372168 12-23-24 %e A372168 12-23-34 %e A372168 12-24-34 %e A372168 13-14-23 %e A372168 13-14-24 %e A372168 13-23-24 %e A372168 13-23-34 %e A372168 13-24-34 %e A372168 14-23-24 %e A372168 14-23-34 %e A372168 14-24-34 %e A372168 12-13-24-34 %e A372168 12-14-23-34 %e A372168 13-14-23-24 %t A372168 cys[y_]:=Select[Subsets[Union@@y,{3}],MemberQ[y,{#[[1]],#[[2]]}] && MemberQ[y,{#[[1]],#[[3]]}] && MemberQ[y,{#[[2]],#[[3]]}]&]; %t A372168 Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Union@@#==Range[n]&&Length[cys[#]]==0&]],{n,0,5}] %Y A372168 Dominated by A006129, unlabeled A002494. %Y A372168 For all cycles (not just triangles) we have A105784, unlabeled A144958. %Y A372168 Covering case of A213434 (column k = 0 of A372170, unlabeled A263340). %Y A372168 The connected case is A345218, unlabeled A024607. %Y A372168 Column k = 0 of A372167, unlabeled A372173. %Y A372168 The unlabeled version is A372169. %Y A372168 For a unique triangle we have A372171, non-covering A372172. %Y A372168 A000088 counts unlabeled graphs, labeled A006125. %Y A372168 A001858 counts acyclic graphs, unlabeled A005195. %Y A372168 A054548 counts covering graphs by number of edges, unlabeled A370167. %Y A372168 Cf. A000272, A053530, A121251, A367862, A367863, A372191, A372174, A372175. %K A372168 nonn,more %O A372168 0,4 %A A372168 _Gus Wiseman_, Apr 23 2024