cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372177 E.g.f. A(x) satisfies A(x) = exp( x * A(x)^(1/2) * (1 + A(x)^(1/2)) ).

This page as a plain text file.
%I A372177 #18 Apr 23 2024 11:18:22
%S A372177 1,2,10,86,1072,17652,362692,8950216,258135136,8525942000,
%T A372177 317455926544,13159289478480,601125054656320,30006335335032448,
%U A372177 1625132762002203136,94920040351049627648,5947667725489120124416,397991563599617527723776
%N A372177 E.g.f. A(x) satisfies A(x) = exp( x * A(x)^(1/2) * (1 + A(x)^(1/2)) ).
%F A372177 E.g.f.: A(x) = B(x)^2 where B(x) is the e.g.f. of A138860.
%F A372177 If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + A(x)^(u/r)) ), then a(n) = r * Sum_{k=0..n} (t*n+u*k+r)^(n-1) * binomial(n,k).
%o A372177 (PARI) a(n, r=1, t=1/2, u=1/2) = r*sum(k=0, n, (t*n+u*k+r)^(n-1)*binomial(n, k));
%Y A372177 Cf. A138860, A372232.
%K A372177 nonn
%O A372177 0,2
%A A372177 _Seiichi Manyama_, Apr 23 2024