This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372178 #11 Apr 21 2024 11:40:53 %S A372178 1,2,12,122,1800,35002,848236,24664362,837602352,32558200370, %T A372178 1426118691924,69522324440098,3733960438696648,219101400537409002, %U A372178 13946923555466389884,957297896801470079258,70483467144263313405024,5541471459106022647303522 %N A372178 E.g.f. A(x) satisfies A(x) = exp( 2 * x * A(x)^(1/2) * (1 + x * A(x)) ). %F A372178 E.g.f.: A(x) = B(x)^2 where B(x) is the e.g.f. of A363355. %F A372178 If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s ), then a(n) = r * n! * Sum_{k=0..n} (t*k+u*(n-k)+r)^(k-1) * binomial(s*k,n-k)/k!. %o A372178 (PARI) a(n, r=2, s=1, t=1, u=2) = r*n!*sum(k=0, n, (t*k+u*(n-k)+r)^(k-1)*binomial(s*k, n-k)/k!); %Y A372178 Cf. A363355, A372164, A372179. %K A372178 nonn %O A372178 0,2 %A A372178 _Seiichi Manyama_, Apr 21 2024