cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372180 Square array read by antidiagonals upwards in which T(n,m) is the n-th number whose symmetric representation of sigma consists of m copies of unimodal pattern 121 (separated by 0's if m > 1).

This page as a plain text file.
%I A372180 #18 Apr 28 2024 22:27:53
%S A372180 6,12,78,20,102,1014,24,114,1734,12246,28,138,2166,12714,171366,40,
%T A372180 174,3174,13026,501126,1922622,48,186,5046,13182,781926,2057406,
%U A372180 28960854,56,222,5766,13494,1679046,2067546,144825414,300014754,80,246,8214,13962,4243686,2072382,282275286,300137214,4174476774
%N A372180 Square array read by antidiagonals upwards in which T(n,m) is the n-th number whose symmetric representation of sigma consists of m copies of unimodal pattern 121 (separated by 0's if m > 1).
%C A372180 Every number in this sequence is even since the symmetric representation of sigma for an odd number q starts 101. Each number in column m of T(n,m) has 2*m odd divisors.
%C A372180 Since u(m) = 2 * 3 * 13^(m-1), m>=1, has 2m odd divisors and 1 < 3 < 4 < 4*3 < 13 < 3*13 < 4*13 < 3*4*13 < 13^2 < ..., the symmetric representation of sigma for u(m) consists of m copies of unimodal pattern 121. Therefore, every column in the table T(n,m), m>=1, contains infinitely many entries. Number u(m) is the smallest entry in the m-th column when m is prime.
%C A372180 In general: If m>1 then T(n,m) = 2^k * q, k>=1, q odd, has at least 4 odd divisors which satisfy
%C A372180 d_(2i+2)  < 2^(k+1) * d_(2i+1) < 2^(k+1) * d_(2i+2) < d_(2i+3), i>=0,
%C A372180 with the odd divisors d_j of n in increasing order.
%F A372180 T(n,1) = 2^k * p with odd prime p satisfying p < 2^(k+1), see A370205.
%F A372180 T(n,2) = 2^k * p * q, k > 0, p and q prime,  2 < p < 2^(k+1) <  2^(k+1) * p < q, see A370206.
%e A372180 a(1) = T(1,1) = 6, its symmetric representation of sigma, SRS(6), has unimodal pattern 121 and a single unit of width 2 at the diagonal.
%e A372180 a(3) = T(1,2) = 78, SRS(78) has unimodal pattern 1210121;
%e A372180 a(10) = T(1,4) = 12246, SRS(12246) has unimodal pattern 121012101210121;
%e A372180 both symmetric representations of sigma have width 0 at the diagonal where two parts meets.
%e A372180 Each number in the m-th column has 2m odd divisors. T(1,9) = 4174476774.
%e A372180   -------------------------------------------------------------------------
%e A372180    n\m  1    2     3     4       5         6          7          8
%e A372180   -------------------------------------------------------------------------
%e A372180    1|   6   78   1014  12246   171366   1922622    28960854  300014754 ...
%e A372180    2|  12  102   1734  12714   501126   2057406   144825414  300137214 ...
%e A372180    3|  20  114   2166  13026   781926   2067546   282275286  300235182 ...
%e A372180    4|  24  138   3174  13182   1679046  2072382   888215334  300357642 ...
%e A372180    5|  28  174   5046  13494   4243686  2081742  3568939926  300431118 ...
%e A372180    6|  40  186   5766  13962   5541126  2091882     ...      300602562 ...
%e A372180    7|  48  222   8214  14118   8487372  2097966              300651546 ...
%e A372180    8|  56  246  10086  14898  11082252  2110134              300896466 ...
%e A372180    9|  80  258  10092  15054  11244966  2112162              301165878 ...
%e A372180   10|  88  282  11094  15366  16954566  2116218              301386306 ...
%e A372180   ...
%t A372180 divQ[k_, {d1_, d2_, d3_}] := d2<2^(k+1)d1&&2^(k+1)d2<d3
%t A372180 seqQ[t_, m_] := Module[{oP, k, dL}, oP=NestWhile[#/2&, t, EvenQ[#]&]; k=Log[2, t/oP]; dL=Divisors[oP]; Length[dL]==2m&&If[Length[dL]==2, Last[dL]<2^(k+1), AllTrue[Partition[dL, 3, 2], divQ[k, #]&]]]
%t A372180 a372180[{r_, s_}, m_] := Select[Range[r, s], seqQ[#, m]&] (* range r...s of numbers in column m *)
%t A372180 a372180[{1, 15366}, 4] (* computes column 4 in the table *)
%t A372180 a372180[{1, 2116218}, 6] (* computes column 6 in the table *)
%Y A372180 Row 1 gives A372181.
%Y A372180 Column 1 gives A370205.
%Y A372180 Column 2 gives A370206.
%Y A372180 Cf. A235791, A237048, A237270, A237271, A237591, A237593, A249223, A262045, A341969, A341971, A342592, A342594, A342595, A342596, A367377, A370209.
%K A372180 nonn,tabl
%O A372180 1,1
%A A372180 _Hartmut F. W. Hoft_, Apr 21 2024