cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372187 Numbers m such that 72*m + 1, 576*m + 1, 648*m + 1, 1296*m + 1, and 2592*m + 1 are all primes.

This page as a plain text file.
%I A372187 #8 Apr 21 2024 19:10:17
%S A372187 95,890,3635,8150,9850,12740,13805,18715,22590,23591,32526,36395,
%T A372187 38571,49016,49456,57551,58296,61275,80756,81050,84980,99940,104346,
%U A372187 115361,116761,121055,122550,129320,140331,142625,149431,153505,159306,159730,169625,173485,181661
%N A372187 Numbers m such that 72*m + 1, 576*m + 1, 648*m + 1, 1296*m + 1, and 2592*m + 1 are all primes.
%C A372187 If m is a term, then (72*m + 1) * (576*m + 1) * (648*m + 1) * (1296*m + 1) * (2592*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{5,5}(m) in Nakamula et al. (2007).
%C A372187 The corresponding Carmichael numbers are 698669495582067436250881, 50411423376758357271937215361, 57292035175893741987253427965441, ...
%H A372187 Amiram Eldar, <a href="/A372187/b372187.txt">Table of n, a(n) for n = 1..10000</a>
%H A372187 Ken Nakamula, Hirofumi Tsumura, and Hiroaki Komai, <a href="https://arxiv.org/abs/math/0702410">New polynomials producing absolute pseudoprimes with any number of prime factors</a>, arXiv:math/0702410 [math.NT], 2007.
%e A372187 95 is a term since 72*95 + 1 = 6841, 576*95 + 1 = 54721, 648*95 + 1 = 61561, 1296*95 + 1 = 123121, and 2592*95 + 1 = 246241 are all primes.
%t A372187 q[n_] := AllTrue[{72, 576, 648, 1296, 2592}, PrimeQ[#*n + 1] &]; Select[Range[200000], q]
%o A372187 (PARI) is(n) = isprime(72*n + 1) && isprime(576*n + 1) && isprime(648*n + 1) && isprime(1296*n + 1) && isprime(2592*n + 1);
%Y A372187 Cf. A002997, A126797, A318646.
%Y A372187 Similar sequences: A046025, A257035, A206024, A206349, A372186, A372188.
%K A372187 nonn,easy
%O A372187 1,1
%A A372187 _Amiram Eldar_, Apr 21 2024