This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372197 #15 Jul 07 2024 21:03:41 %S A372197 2,5,11,17,37,41,101,251,401,491,641,811,977,1009,1301,1459,1601,1613, %T A372197 2269,2297,2521,4001,4357,4931,5741,5849,8101,9001,10891,12071,12101, %U A372197 13001,14621,16001,17291,19441,22961,23633,26681,27011,30493,31541,34781,38153,42283,42751,46061,58481,66457 %N A372197 Primes that can be represented as k*R(k) + 1, where R(k) is the reverse of k. %C A372197 Values of the primes corresponding to A073805, sorted and with duplicates removed. %C A372197 Most terms can be obtained in two ways, corresponding to x * R(x) + 1 and R(x) * x + 1 or more generally (10^i * x) * R(x) + 1 and (10^i * R(x)) * x + 1, where R(x) <> x and x doesn't end in 0 so R(R(x)) = x. The first term that can be obtained in four ways is 1015561 = 1560 * 651 + 1 = 2730 * 372 + 1 = 3720 * 273 + 1 = 6510 * 156 + 1. %H A372197 Robert Israel, <a href="/A372197/b372197.txt">Table of n, a(n) for n = 1..10000</a> %e A372197 a(1) = 2 = 1 * 1 + 1. %e A372197 a(3) = 11 = 10 * 1 + 1. %e A372197 a(13) = 977 = 16 * 61 + 1. %p A372197 N:= 6: # for terms <= 10^N where N is even %p A372197 S:= {}: %p A372197 for x from 1 to 10^(N/2)-1 do %p A372197 if x mod 10 = 0 then next fi; %p A372197 r:= rev(x); %p A372197 if r < x then next fi; %p A372197 v:= x*r; %p A372197 for i from 0 do %p A372197 w:= 10^i*v+1; %p A372197 if w > 10^N then break fi; %p A372197 if isprime(w) then S:= S union {w} fi; %p A372197 od %p A372197 od: %p A372197 sort(convert(S,list)); %Y A372197 Cf. A004086, A073805. %K A372197 nonn,base %O A372197 1,1 %A A372197 _Robert Israel_, Jul 03 2024