This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372219 #16 May 19 2024 11:53:21 %S A372219 1,12,12,17,7,30,30,43,17,56,56,81,31,90,90,131,49,132,132,193,71,182, %T A372219 182,267,97,240,240,353,127,306,306,451,161,380,380,561,199,462,462, %U A372219 683,241,552,552,817,287,650,650,963,337,756,756,1121,391,870,870,1291,449,992,992,1473 %N A372219 Four-column table read by rows: row n is the unique primitive Pythagorean quadruple (a,b,c,d) such that a < (a + b + c - d)/2 = 2n(n + 1) and b = c. %C A372219 A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer. %D A372219 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024. %H A372219 Miguel-Ángel Pérez García-Ortega, <a href="/A372219/a372219.pdf">Teorema 10.12</a> %F A372219 Row n = (a, b, c, d) = (2n^2 - 1, 4n^2 + 6n + 2, 4n^2 + 6n + 2, 6n^2 + 8n + 3). %e A372219 Table begins: %e A372219 n=1: 1, 12, 12, 17; %e A372219 n=2: 7, 30, 30, 43; %e A372219 n=3: 17, 56, 56, 81; %e A372219 n=4: 31, 90, 90, 131; %e A372219 n=5: 49, 132, 132, 193; %t A372219 cuaternas={};Do[cuaternas=Join[cuaternas,{2n^2-1,4n^2+6n+2,4n^2+6n+2,6n^2+8n+3}],{n,1,35}];cuaternas %Y A372219 Cf. A372220, A056220 (first column), A002939 (second column), A126587 (fourth column). %K A372219 nonn,easy,tabf %O A372219 2,2 %A A372219 _Miguel-Ángel Pérez García-Ortega_, Apr 22 2024