A372237 a(0) = 4; to obtain a(k), write out the base-(2^k) expansion of a(k-1), bump to base 2^(k+1), then subtract 1.
4, 15, 26, 49, 96, 191, 318, 573, 1084, 2107, 4154, 8249, 16440, 32823, 65590, 131125, 262196, 524339, 1048626, 2097201, 4194352, 8388655, 16777262, 33554477, 67108908, 134217771, 268435498, 536870953, 1073741864, 2147483687, 4294967334, 8589934629, 17179869220
Offset: 0
Examples
a(0) = 100_2 = 4; a(1) = 100_4 - 1 = 15 = 33_4; a(2) = 33_8 - 1 = 26 = 32_8; a(3) = 32_16 - 1 = 49 = 31_16; a(4) = 31_32 - 1 = 96 = 30_32; a(5) = 30_64 - 1 = 191 = (2,63)_64.
Links
- Jianing Song, Table of n, a(n) for n = 0..1000
- Googology Wiki, Goodstein sequence.
- Wikipedia, Goodstein's Theorem
Programs
-
PARI
A372237_first_N_terms(N) = my(v=vector(N+1)); v[1] = 4; for(i=1, N, v[i+1] = fromdigits(digits(v[i],2^i),2^(i+1))-1); v
Formula
a(k) = 2^(k+2) + 68 - k for 5 <= k <= 68. The base-(2^(k+1)) expansion of a(k) consists of two digits 2 and 68 - k.
a(k) = 2^(k+1) + 2^70 + 68 - k for 69 <= 2^70 + 68. The base-(2^(k+1)) expansion of a(k) consists of two digits 1 and 2^70 + 68 - k.
a(k) = 2^(2^70+70) + 2^70 + 68 - k for 2^70 + 69 <= k <= 2^(2^70+70) + 2^70 + 68. The base-(2^(k+1)) expansion of a(k) consists of a single digit 2^(2^70+70) + 2^70 + 68 - k.
Comments