cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372246 E.g.f. A(x) satisfies A(x) = exp( x * A(x) * (1 + A(x)^(1/2)) ).

This page as a plain text file.
%I A372246 #10 Apr 24 2024 08:20:53
%S A372246 1,2,14,182,3528,91572,2988124,117646664,5429848160,287596190960,
%T A372246 17197966810224,1146212005029456,84257333026857472,
%U A372246 6772618660901287040,590968891266018673664,55635634440230961625088,5621016808791883758841344,606656453852999167732922112
%N A372246 E.g.f. A(x) satisfies A(x) = exp( x * A(x) * (1 + A(x)^(1/2)) ).
%F A372246 E.g.f.: A(x) = B(x)^2 where B(x) is the e.g.f. of A372251.
%F A372246 If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + A(x)^(u/r)) ), then a(n) = r * Sum_{k=0..n} (t*n+u*k+r)^(n-1) * binomial(n,k).
%o A372246 (PARI) a(n, r=1, t=1, u=1/2) = r*sum(k=0, n, (t*n+u*k+r)^(n-1)*binomial(n, k));
%Y A372246 Cf. A372177, A372236, A372251.
%K A372246 nonn
%O A372246 0,2
%A A372246 _Seiichi Manyama_, Apr 24 2024