A372248 Lowest prime p in a ladder of 5 consecutive primes p, p+2, p+6, p+14, p+30.
2237, 6827, 17387, 37307, 43397, 58907, 65837, 89597, 105527, 126227, 189347, 190577, 212867, 218987, 569417, 570077, 649277, 673397, 678407, 704447, 728837, 770177, 826667, 981437, 988577, 1016567, 1198397, 1244987, 1322327, 1455197, 1815347, 2162057, 2166947, 2357807, 2364287, 2422697
Offset: 1
Keywords
Examples
17387, 17389, 17393, 17401 and 17417 are 5 consecutive primes with gaps 2, 4, 8 and 16, so 17387 is in the sequence.
Programs
-
Mathematica
First /@ Parallelize[ Select[Table[NextPrime[Prime@i, Range@5], {i, 10^6}], Differences@# == {2, 4, 8, 16} &]] (* Mikk Heidemaa, Apr 25 2024 *)