This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372259 #8 Apr 25 2024 13:50:03 %S A372259 4830,6970,7056,7096,7290,7690,7830,8370,8596,8652,8790,8970,9076, %T A372259 9360,9370,9380,9670,9706,9720,9730,9870,10752,12780,14760,14820, %U A372259 15628,15678,16038,16704,17082,17820,17920,18720,19084,19240,20457,20574,20754,21658,24056,24507,25803,26180,26910,27504,28156,28651,30296,30576,30752,31920,32760,32890,34902,36508,47320,58401,65128,65821 %N A372259 Numbers k which have a factorization k = f_1*f_2*...*f_r where f_i >= 1 and the digits of {k, f_1, f_2, ..., f_r} together give 0,1,...,9 exactly once. %C A372259 A370970 is a subsequence. In contrast to A370970, here the factors f_i are allowed to be equal to 1. %e A372259 The complete list of terms: %e A372259 4830 = 1*2*5*7*69 %e A372259 6970 = 1*2*3485 %e A372259 7056 = 1*3*24*98 = 1*3*8*294 %e A372259 7096 = 1*2*3548 %e A372259 7290 = 1*3*5*486 %e A372259 7690 = 1*2*3845 %e A372259 7830 = 1*6*29*45 %e A372259 8370 = 1*2*9*465 %e A372259 8596 = 2*14*307 %e A372259 8652 = 1*4*7*309 %e A372259 8790 = 2*3*1465 %e A372259 8970 = 1*26*345 %e A372259 9076 = 1*2*4538 %e A372259 9360 = 1*5*24*78 = 2*4*15*78 %e A372259 9370 = 1*2*4685 %e A372259 9380 = 2*5*14*67 %e A372259 9670 = 1*2*4835 %e A372259 9706 = 1*2*4853 %e A372259 9720 = 1*3*5*648 %e A372259 9730 = 1*2*4865 %e A372259 9870 = 2*3*1645 %e A372259 10752 = 3*4*896 %e A372259 12780 = 4*5*639 %e A372259 14760 = 5*9*328 %e A372259 14820 = 5*39*76 %e A372259 15628 = 4*3907 %e A372259 15678 = 39*402 %e A372259 16038 = 54*297 = 27*594 %e A372259 16704 = 9*32*58 %e A372259 17082 = 3*5694 %e A372259 17820 = 45*396 = 36*495 %e A372259 17920 = 8*35*64 %e A372259 18720 = 4*5*936 %e A372259 19084 = 52*367 %e A372259 19240 = 8*37*65 %e A372259 20457 = 3*6819 %e A372259 20574 = 6*9*381 %e A372259 20754 = 3*6918 %e A372259 21658 = 7*3094 %e A372259 24056 = 8*31*97 %e A372259 24507 = 3*8169 %e A372259 25803 = 9*47*61 %e A372259 26180 = 4*7*935 %e A372259 26910 = 78*345 %e A372259 27504 = 3*9168 %e A372259 28156 = 4*7039 %e A372259 28651 = 7*4093 %e A372259 30296 = 7*8*541 %e A372259 30576 = 8*42*91 %e A372259 30752 = 4*8*961 %e A372259 31920 = 5*76*84 %e A372259 32760 = 8*45*91 %e A372259 32890 = 46*715 %e A372259 34902 = 6*5817 %e A372259 36508 = 4*9127 %e A372259 47320 = 8*65*91 %e A372259 58401 = 63*927 %e A372259 65128 = 7*9304 %e A372259 65821 = 7*9403 %Y A372259 Cf. A370970, A370972, A372106. %K A372259 nonn,base,full,fini %O A372259 1,1 %A A372259 _Chai Wah Wu_, Apr 24 2024