cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372267 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 4.

This page as a plain text file.
%I A372267 #17 Apr 02 2025 06:47:16
%S A372267 3,3,9,9,8,1,0,4,3,5,8,4,8,5,6,2,6,4,8,0,2,6,6,5,7,5,9,1,0,3,2,4,4,6,
%T A372267 8,7,2,0,0,5,7,5,8,6,9,7,7,0,9,1,4,3,5,2,5,9,2,9,5,3,9,7,6,8,2,1,0,2,
%U A372267 0,0,3,0,4,6,3,2,3,7,0,3,4,4,7,7,8,7,5
%N A372267 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 4.
%H A372267 Paolo Xausa, <a href="/A372267/b372267.txt">Table of n, a(n) for n = 0..10000</a>
%H A372267 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], Table 25.4, n=4
%H A372267 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>.
%H A372267 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F A372267 Smallest positive root of 35*x^4 - 30*x^2 + 3 = 0.
%F A372267 Equals sqrt((3-2*sqrt(6/5))/7).
%e A372267 0.339981043584856264802665759103244687200575869770914352592953...
%t A372267 First[RealDigits[Root[LegendreP[4, #] &, 3], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *)
%Y A372267 Cf. A008316, A100258.
%Y A372267 There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
%Y A372267    k | zeros
%Y A372267   ---+--------------------------
%Y A372267    2 | A020760
%Y A372267    3 | A010513/10
%Y A372267    4 | A372267, A372268
%Y A372267    5 | A372269, A372270
%Y A372267    6 | A372271, A372272, A372273
%Y A372267    7 | A372274, A372275, A372276
%K A372267 nonn,cons
%O A372267 0,1
%A A372267 _Pontus von Brömssen_, Apr 25 2024