This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372267 #17 Apr 02 2025 06:47:16 %S A372267 3,3,9,9,8,1,0,4,3,5,8,4,8,5,6,2,6,4,8,0,2,6,6,5,7,5,9,1,0,3,2,4,4,6, %T A372267 8,7,2,0,0,5,7,5,8,6,9,7,7,0,9,1,4,3,5,2,5,9,2,9,5,3,9,7,6,8,2,1,0,2, %U A372267 0,0,3,0,4,6,3,2,3,7,0,3,4,4,7,7,8,7,5 %N A372267 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 4. %H A372267 Paolo Xausa, <a href="/A372267/b372267.txt">Table of n, a(n) for n = 0..10000</a> %H A372267 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], Table 25.4, n=4 %H A372267 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>. %H A372267 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>. %F A372267 Smallest positive root of 35*x^4 - 30*x^2 + 3 = 0. %F A372267 Equals sqrt((3-2*sqrt(6/5))/7). %e A372267 0.339981043584856264802665759103244687200575869770914352592953... %t A372267 First[RealDigits[Root[LegendreP[4, #] &, 3], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *) %Y A372267 Cf. A008316, A100258. %Y A372267 There are floor(k/2) positive zeros of the Legendre polynomial of degree k: %Y A372267 k | zeros %Y A372267 ---+-------------------------- %Y A372267 2 | A020760 %Y A372267 3 | A010513/10 %Y A372267 4 | A372267, A372268 %Y A372267 5 | A372269, A372270 %Y A372267 6 | A372271, A372272, A372273 %Y A372267 7 | A372274, A372275, A372276 %K A372267 nonn,cons %O A372267 0,1 %A A372267 _Pontus von Brömssen_, Apr 25 2024