This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372268 #16 Apr 02 2025 06:48:02 %S A372268 8,6,1,1,3,6,3,1,1,5,9,4,0,5,2,5,7,5,2,2,3,9,4,6,4,8,8,8,9,2,8,0,9,5, %T A372268 0,5,0,9,5,7,2,5,3,7,9,6,2,9,7,1,7,6,3,7,6,1,5,7,2,1,9,2,0,9,0,6,5,2, %U A372268 9,4,7,1,4,9,5,0,4,8,8,6,5,7,0,4,1,6,2 %N A372268 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 4. %H A372268 Paolo Xausa, <a href="/A372268/b372268.txt">Table of n, a(n) for n = 0..10000</a> %H A372268 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Table 25.4, n=4 %H A372268 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>. %H A372268 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>. %F A372268 Largest positive root of 35*x^4 - 30*x^2 + 3 = 0. %F A372268 Equals sqrt((3+2*sqrt(6/5))/7). %e A372268 0.861136311594052575223946488892809505095725379629717637615721... %t A372268 First[RealDigits[Root[LegendreP[4, #] &, 4], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *) %Y A372268 Cf. A008316, A100258. %Y A372268 There are floor(k/2) positive zeros of the Legendre polynomial of degree k: %Y A372268 k | zeros %Y A372268 ---+-------------------------- %Y A372268 2 | A020760 %Y A372268 3 | A010513/10 %Y A372268 4 | A372267, A372268 %Y A372268 5 | A372269, A372270 %Y A372268 6 | A372271, A372272, A372273 %Y A372268 7 | A372274, A372275, A372276 %K A372268 nonn,cons %O A372268 0,1 %A A372268 _Pontus von Brömssen_, Apr 25 2024