cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372269 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 5.

This page as a plain text file.
%I A372269 #14 Feb 27 2025 04:24:59
%S A372269 5,3,8,4,6,9,3,1,0,1,0,5,6,8,3,0,9,1,0,3,6,3,1,4,4,2,0,7,0,0,2,0,8,8,
%T A372269 0,4,9,6,7,2,8,6,6,0,6,9,0,5,5,5,9,9,5,6,2,0,2,2,3,1,6,2,7,0,5,9,4,7,
%U A372269 1,1,8,5,3,6,7,7,5,5,2,9,1,0,3,5,8,0,3
%N A372269 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 5.
%H A372269 Paolo Xausa, <a href="/A372269/b372269.txt">Table of n, a(n) for n = 0..10000</a>
%H A372269 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>.
%H A372269 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F A372269 Smallest positive root of 63*x^4 - 70*x^2 + 15 = 0.
%F A372269 Equals sqrt(5-2*sqrt(10/7))/3.
%e A372269 0.538469310105683091036314420700208804967286606905559956202231...
%t A372269 First[RealDigits[Root[LegendreP[5, #] &, 4], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *)
%Y A372269 Cf. A008316, A100258.
%Y A372269 There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
%Y A372269    k | zeros
%Y A372269   ---+--------------------------
%Y A372269    2 | A020760
%Y A372269    3 | A010513/10
%Y A372269    4 | A372267, A372268
%Y A372269    5 | A372269, A372270
%Y A372269    6 | A372271, A372272, A372273
%Y A372269    7 | A372274, A372275, A372276
%K A372269 nonn,cons
%O A372269 0,1
%A A372269 _Pontus von Brömssen_, Apr 25 2024