This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372269 #14 Feb 27 2025 04:24:59 %S A372269 5,3,8,4,6,9,3,1,0,1,0,5,6,8,3,0,9,1,0,3,6,3,1,4,4,2,0,7,0,0,2,0,8,8, %T A372269 0,4,9,6,7,2,8,6,6,0,6,9,0,5,5,5,9,9,5,6,2,0,2,2,3,1,6,2,7,0,5,9,4,7, %U A372269 1,1,8,5,3,6,7,7,5,5,2,9,1,0,3,5,8,0,3 %N A372269 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 5. %H A372269 Paolo Xausa, <a href="/A372269/b372269.txt">Table of n, a(n) for n = 0..10000</a> %H A372269 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>. %H A372269 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>. %F A372269 Smallest positive root of 63*x^4 - 70*x^2 + 15 = 0. %F A372269 Equals sqrt(5-2*sqrt(10/7))/3. %e A372269 0.538469310105683091036314420700208804967286606905559956202231... %t A372269 First[RealDigits[Root[LegendreP[5, #] &, 4], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *) %Y A372269 Cf. A008316, A100258. %Y A372269 There are floor(k/2) positive zeros of the Legendre polynomial of degree k: %Y A372269 k | zeros %Y A372269 ---+-------------------------- %Y A372269 2 | A020760 %Y A372269 3 | A010513/10 %Y A372269 4 | A372267, A372268 %Y A372269 5 | A372269, A372270 %Y A372269 6 | A372271, A372272, A372273 %Y A372269 7 | A372274, A372275, A372276 %K A372269 nonn,cons %O A372269 0,1 %A A372269 _Pontus von Brömssen_, Apr 25 2024