This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372270 #14 Feb 27 2025 04:25:06 %S A372270 9,0,6,1,7,9,8,4,5,9,3,8,6,6,3,9,9,2,7,9,7,6,2,6,8,7,8,2,9,9,3,9,2,9, %T A372270 6,5,1,2,5,6,5,1,9,1,0,7,6,2,5,3,0,8,6,2,8,7,3,7,6,2,2,8,6,5,4,3,7,7, %U A372270 0,7,9,4,9,1,6,6,8,6,8,4,6,9,4,1,1,4,2 %N A372270 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 5. %H A372270 Paolo Xausa, <a href="/A372270/b372270.txt">Table of n, a(n) for n = 0..10000</a> %H A372270 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>. %H A372270 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>. %F A372270 Largest positive root of 63*x^4 - 70*x^2 + 15 = 0. %F A372270 Equals sqrt(5+2*sqrt(10/7))/3. %e A372270 0.906179845938663992797626878299392965125651910762530862873762... %t A372270 First[RealDigits[Root[LegendreP[5, #] &, 5], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *) %Y A372270 Cf. A008316, A100258. %Y A372270 There are floor(k/2) positive zeros of the Legendre polynomial of degree k: %Y A372270 k | zeros %Y A372270 ---+-------------------------- %Y A372270 2 | A020760 %Y A372270 3 | A010513/10 %Y A372270 4 | A372267, A372268 %Y A372270 5 | A372269, A372270 %Y A372270 6 | A372271, A372272, A372273 %Y A372270 7 | A372274, A372275, A372276 %K A372270 nonn,cons %O A372270 0,1 %A A372270 _Pontus von Brömssen_, Apr 25 2024