cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372270 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 5.

This page as a plain text file.
%I A372270 #14 Feb 27 2025 04:25:06
%S A372270 9,0,6,1,7,9,8,4,5,9,3,8,6,6,3,9,9,2,7,9,7,6,2,6,8,7,8,2,9,9,3,9,2,9,
%T A372270 6,5,1,2,5,6,5,1,9,1,0,7,6,2,5,3,0,8,6,2,8,7,3,7,6,2,2,8,6,5,4,3,7,7,
%U A372270 0,7,9,4,9,1,6,6,8,6,8,4,6,9,4,1,1,4,2
%N A372270 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 5.
%H A372270 Paolo Xausa, <a href="/A372270/b372270.txt">Table of n, a(n) for n = 0..10000</a>
%H A372270 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>.
%H A372270 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F A372270 Largest positive root of 63*x^4 - 70*x^2 + 15 = 0.
%F A372270 Equals sqrt(5+2*sqrt(10/7))/3.
%e A372270 0.906179845938663992797626878299392965125651910762530862873762...
%t A372270 First[RealDigits[Root[LegendreP[5, #] &, 5], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *)
%Y A372270 Cf. A008316, A100258.
%Y A372270 There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
%Y A372270    k | zeros
%Y A372270   ---+--------------------------
%Y A372270    2 | A020760
%Y A372270    3 | A010513/10
%Y A372270    4 | A372267, A372268
%Y A372270    5 | A372269, A372270
%Y A372270    6 | A372271, A372272, A372273
%Y A372270    7 | A372274, A372275, A372276
%K A372270 nonn,cons
%O A372270 0,1
%A A372270 _Pontus von Brömssen_, Apr 25 2024