cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372271 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 6.

This page as a plain text file.
%I A372271 #14 Feb 27 2025 04:25:17
%S A372271 2,3,8,6,1,9,1,8,6,0,8,3,1,9,6,9,0,8,6,3,0,5,0,1,7,2,1,6,8,0,7,1,1,9,
%T A372271 3,5,4,1,8,6,1,0,6,3,0,1,4,0,0,2,1,3,5,0,1,8,1,3,9,5,1,6,4,5,7,4,2,7,
%U A372271 4,9,3,4,2,7,5,6,3,9,8,4,2,2,4,9,2,2,4
%N A372271 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 6.
%H A372271 Paolo Xausa, <a href="/A372271/b372271.txt">Table of n, a(n) for n = 0..10000</a>
%H A372271 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>.
%H A372271 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>.
%F A372271 Smallest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.
%e A372271 0.238619186083196908630501721680711935418610630140021350181395...
%t A372271 First[RealDigits[Root[LegendreP[6, #] &, 4], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *)
%Y A372271 Cf. A008316, A100258.
%Y A372271 There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
%Y A372271    k | zeros
%Y A372271   ---+--------------------------
%Y A372271    2 | A020760
%Y A372271    3 | A010513/10
%Y A372271    4 | A372267, A372268
%Y A372271    5 | A372269, A372270
%Y A372271    6 | A372271, A372272, A372273
%Y A372271    7 | A372274, A372275, A372276
%K A372271 nonn,cons
%O A372271 0,1
%A A372271 _Pontus von Brömssen_, Apr 25 2024