This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372271 #14 Feb 27 2025 04:25:17 %S A372271 2,3,8,6,1,9,1,8,6,0,8,3,1,9,6,9,0,8,6,3,0,5,0,1,7,2,1,6,8,0,7,1,1,9, %T A372271 3,5,4,1,8,6,1,0,6,3,0,1,4,0,0,2,1,3,5,0,1,8,1,3,9,5,1,6,4,5,7,4,2,7, %U A372271 4,9,3,4,2,7,5,6,3,9,8,4,2,2,4,9,2,2,4 %N A372271 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 6. %H A372271 Paolo Xausa, <a href="/A372271/b372271.txt">Table of n, a(n) for n = 0..10000</a> %H A372271 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>. %H A372271 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>. %F A372271 Smallest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0. %e A372271 0.238619186083196908630501721680711935418610630140021350181395... %t A372271 First[RealDigits[Root[LegendreP[6, #] &, 4], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *) %Y A372271 Cf. A008316, A100258. %Y A372271 There are floor(k/2) positive zeros of the Legendre polynomial of degree k: %Y A372271 k | zeros %Y A372271 ---+-------------------------- %Y A372271 2 | A020760 %Y A372271 3 | A010513/10 %Y A372271 4 | A372267, A372268 %Y A372271 5 | A372269, A372270 %Y A372271 6 | A372271, A372272, A372273 %Y A372271 7 | A372274, A372275, A372276 %K A372271 nonn,cons %O A372271 0,1 %A A372271 _Pontus von Brömssen_, Apr 25 2024