This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372272 #14 Feb 27 2025 04:24:10 %S A372272 6,6,1,2,0,9,3,8,6,4,6,6,2,6,4,5,1,3,6,6,1,3,9,9,5,9,5,0,1,9,9,0,5,3, %T A372272 4,7,0,0,6,4,4,8,5,6,4,3,9,5,1,7,0,0,7,0,8,1,4,5,2,6,7,0,5,8,5,2,1,8, %U A372272 3,4,9,6,6,0,7,1,4,3,1,0,0,9,4,4,2,8,6 %N A372272 Decimal expansion of the middle positive zero of the Legendre polynomial of degree 6. %H A372272 Paolo Xausa, <a href="/A372272/b372272.txt">Table of n, a(n) for n = 0..10000</a> %H A372272 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>. %H A372272 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>. %F A372272 Middle positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0. %e A372272 0.661209386466264513661399595019905347006448564395170070814526... %t A372272 First[RealDigits[Root[LegendreP[6, #] &, 5], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *) %Y A372272 Cf. A008316, A100258. %Y A372272 There are floor(k/2) positive zeros of the Legendre polynomial of degree k: %Y A372272 k | zeros %Y A372272 ---+-------------------------- %Y A372272 2 | A020760 %Y A372272 3 | A010513/10 %Y A372272 4 | A372267, A372268 %Y A372272 5 | A372269, A372270 %Y A372272 6 | A372271, A372272, A372273 %Y A372272 7 | A372274, A372275, A372276 %K A372272 nonn,cons %O A372272 0,1 %A A372272 _Pontus von Brömssen_, Apr 25 2024