cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372273 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 6.

This page as a plain text file.
%I A372273 #13 Feb 27 2025 05:04:57
%S A372273 9,3,2,4,6,9,5,1,4,2,0,3,1,5,2,0,2,7,8,1,2,3,0,1,5,5,4,4,9,3,9,9,4,6,
%T A372273 0,9,1,3,4,7,6,5,7,3,7,7,1,2,2,8,9,8,2,4,8,7,2,5,4,9,6,1,6,5,2,6,6,1,
%U A372273 3,5,0,0,8,4,4,2,0,0,1,9,6,2,7,6,2,8,8
%N A372273 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 6.
%H A372273 Paolo Xausa, <a href="/A372273/b372273.txt">Table of n, a(n) for n = 0..10000</a>
%H A372273 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>.
%H A372273 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>.
%F A372273 Largest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.
%e A372273 0.932469514203152027812301554493994609134765737712289824872549...
%t A372273 First[RealDigits[Root[LegendreP[6, #] &, 6], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *)
%Y A372273 Cf. A008316, A100258.
%Y A372273 There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
%Y A372273    k | zeros
%Y A372273   ---+--------------------------
%Y A372273    2 | A020760
%Y A372273    3 | A010513/10
%Y A372273    4 | A372267, A372268
%Y A372273    5 | A372269, A372270
%Y A372273    6 | A372271, A372272, A372273
%Y A372273    7 | A372274, A372275, A372276
%K A372273 nonn,cons
%O A372273 0,1
%A A372273 _Pontus von Brömssen_, Apr 25 2024