This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372273 #13 Feb 27 2025 05:04:57 %S A372273 9,3,2,4,6,9,5,1,4,2,0,3,1,5,2,0,2,7,8,1,2,3,0,1,5,5,4,4,9,3,9,9,4,6, %T A372273 0,9,1,3,4,7,6,5,7,3,7,7,1,2,2,8,9,8,2,4,8,7,2,5,4,9,6,1,6,5,2,6,6,1, %U A372273 3,5,0,0,8,4,4,2,0,0,1,9,6,2,7,6,2,8,8 %N A372273 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 6. %H A372273 Paolo Xausa, <a href="/A372273/b372273.txt">Table of n, a(n) for n = 0..10000</a> %H A372273 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>. %H A372273 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>. %F A372273 Largest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0. %e A372273 0.932469514203152027812301554493994609134765737712289824872549... %t A372273 First[RealDigits[Root[LegendreP[6, #] &, 6], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *) %Y A372273 Cf. A008316, A100258. %Y A372273 There are floor(k/2) positive zeros of the Legendre polynomial of degree k: %Y A372273 k | zeros %Y A372273 ---+-------------------------- %Y A372273 2 | A020760 %Y A372273 3 | A010513/10 %Y A372273 4 | A372267, A372268 %Y A372273 5 | A372269, A372270 %Y A372273 6 | A372271, A372272, A372273 %Y A372273 7 | A372274, A372275, A372276 %K A372273 nonn,cons %O A372273 0,1 %A A372273 _Pontus von Brömssen_, Apr 25 2024