cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372274 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 7.

This page as a plain text file.
%I A372274 #26 Jun 04 2025 00:25:32
%S A372274 4,0,5,8,4,5,1,5,1,3,7,7,3,9,7,1,6,6,9,0,6,6,0,6,4,1,2,0,7,6,9,6,1,4,
%T A372274 6,3,3,4,7,3,8,2,0,1,4,0,9,9,3,7,0,1,2,6,3,8,7,0,4,3,2,5,1,7,9,4,6,6,
%U A372274 3,8,1,3,2,2,6,1,2,5,6,5,5,3,2,8,3,1,2
%N A372274 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 7.
%H A372274 Paolo Xausa, <a href="/A372274/b372274.txt">Table of n, a(n) for n = 0..10000</a>
%H A372274 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Table 25.4, n=7.
%H A372274 A.H.M. Smeets, <a href="/A382103/a382103.py.txt">Python program for Legendre-Gauss quadrature constants.</a>
%H A372274 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LegendrePolynomial.html">Legendre Polynomial</a>.
%H A372274 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Legendre-GaussQuadrature.html">Legendre-Gauss Quadrature</a>.
%H A372274 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>.
%H A372274 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>.
%F A372274 Smallest positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.
%e A372274 0.405845151377397166906606412076961463347382014099370126387043...
%t A372274 First[RealDigits[Root[LegendreP[7, #] &, 5], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *)
%o A372274 (PARI) solve (x = 0.1, 0.5, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ _A.H.M. Smeets_, May 31 2025
%Y A372274 Cf. A008316, A100258.
%Y A372274 There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
%Y A372274    k | zeros                           | corresponding weights for Legendre-Gauss quadrature
%Y A372274   ---+---------------------------------+----------------------------------------------------
%Y A372274    2 | A020760                         | A000007*10
%Y A372274    3 | A010513/10                      | A010716
%Y A372274    4 | A372267, A372268                | A382103, A382104
%Y A372274    5 | A372269, A372270                | A382105, A382106
%Y A372274    6 | A372271, A372272, A372273       | A382107, A382686, A382687
%Y A372274    7 | this sequence, A372275, A372276 | A382688, A382689, A382690
%K A372274 nonn,cons
%O A372274 0,1
%A A372274 _Pontus von Brömssen_, Apr 25 2024