cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372276 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 7.

This page as a plain text file.
%I A372276 #23 Jun 04 2025 00:25:21
%S A372276 9,4,9,1,0,7,9,1,2,3,4,2,7,5,8,5,2,4,5,2,6,1,8,9,6,8,4,0,4,7,8,5,1,2,
%T A372276 6,2,4,0,0,7,7,0,9,3,7,6,7,0,6,1,7,7,8,3,5,4,8,7,6,9,1,0,3,9,1,3,0,6,
%U A372276 3,3,3,0,3,5,4,8,4,0,1,4,0,8,0,5,7,3,0
%N A372276 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 7.
%H A372276 Paolo Xausa, <a href="/A372276/b372276.txt">Table of n, a(n) for n = 0..10000</a>
%H A372276 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Table 25.4, n=7.
%H A372276 A.H.M. Smeets, <a href="/A382103/a382103.py.txt">Python program for Legendre-Gauss quadrature constants.</a>
%H A372276 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LegendrePolynomial.html">Legendre Polynomial</a>.
%H A372276 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Legendre-GaussQuadrature.html">Legendre-Gauss Quadrature</a>.
%H A372276 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>.
%H A372276 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>.
%F A372276 Largest positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.
%e A372276 0.949107912342758524526189684047851262400770937670617783548769...
%t A372276 First[RealDigits[Root[LegendreP[7, #] &, 7], 10, 100]] (* _Paolo Xausa_, Feb 27 2025 *)
%o A372276 (PARI) solve (x = 0.8, 1.0, 429*x^6 - 693*x^4 + 315*x^ - 35) \\ _A.H.M. Smeets_, May 31 2025
%Y A372276 Cf. A008316, A100258.
%Y A372276 There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
%Y A372276    k | zeros                           | corresponding weights for Legendre-Gauss quadrature
%Y A372276   ---+---------------------------------+----------------------------------------------------
%Y A372276    2 | A020760                         | A000007*10
%Y A372276    3 | A010513/10                      | A010716
%Y A372276    4 | A372267, A372268                | A382103, A382104
%Y A372276    5 | A372269, A372270                | A382105, A382106
%Y A372276    6 | A372271, A372272, A372273       | A382107, A382686, A382687
%Y A372276    7 | A372274, A372275, this sequence | A382688, A382689, A382690
%K A372276 nonn,cons
%O A372276 0,1
%A A372276 _Pontus von Brömssen_, Apr 25 2024