This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372277 #23 May 21 2024 05:34:24 %S A372277 87339,332403,9813039 %N A372277 Composite numbers that divide the concatenation of the reverse of their ascending order prime factors, with repetition, when written in binary. %C A372277 The base-2 version of A372046. %C A372277 a(4) > 120000000000. - _Robert P. P. McKone_, May 20 2024 %e A372277 332403 is a term as 332403 = 3 * 179 * 619 = 11_2 * 10110011_2 * 1001101011_2 = "11"_2 * "11001101"_2 * "1101011001"_2 when each prime factor is reversed. This gives "11110011011101011001"_2 when concatenated, and 11110011011101011001_2 = 997209 which is divisible by 332403. %t A372277 a[n_Integer] := Module[{f}, f = Flatten[ConstantArray @@@ FactorInteger[n]]; If[Length[f] < 2, Return[False]]; Mod[FromDigits[StringJoin[StringReverse[IntegerString[#, 2]] & /@ f], 2], n] == 0]; %t A372277 Select[Range[2, 10^5], a] (* _Robert P. P. McKone_, May 02 2024 *) %o A372277 (Python) %o A372277 from itertools import count, islice %o A372277 from sympy import factorint %o A372277 def A372277_gen(startvalue=4): # generator of terms >= startvalue %o A372277 for n in count(max(startvalue,4)): %o A372277 f = factorint(n) %o A372277 if sum(f.values()) > 1: %o A372277 c = 0 %o A372277 for p in sorted(f): %o A372277 a = pow(2,len(s:=bin(p)[2:]),n) %o A372277 q = int(s[::-1],2) %o A372277 for _ in range(f[p]): %o A372277 c = (c*a+q)%n %o A372277 if not c: %o A372277 yield n %o A372277 A372277_list = list(islice(A372277_gen(),3)) # _Chai Wah Wu_, Apr 25 2024 %Y A372277 Cf. A372046, A371821, A371696, A027746. %K A372277 nonn,base,bref,more %O A372277 1,1 %A A372277 _Scott R. Shannon_, Apr 25 2024