cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372277 Composite numbers that divide the concatenation of the reverse of their ascending order prime factors, with repetition, when written in binary.

This page as a plain text file.
%I A372277 #23 May 21 2024 05:34:24
%S A372277 87339,332403,9813039
%N A372277 Composite numbers that divide the concatenation of the reverse of their ascending order prime factors, with repetition, when written in binary.
%C A372277 The base-2 version of A372046.
%C A372277 a(4) > 120000000000. - _Robert P. P. McKone_, May 20 2024
%e A372277 332403 is a term as 332403 = 3 * 179 * 619 = 11_2 * 10110011_2 * 1001101011_2 = "11"_2 * "11001101"_2 * "1101011001"_2 when each prime factor is reversed. This gives "11110011011101011001"_2 when concatenated, and 11110011011101011001_2 = 997209 which is divisible by 332403.
%t A372277 a[n_Integer] := Module[{f}, f = Flatten[ConstantArray @@@ FactorInteger[n]]; If[Length[f] < 2, Return[False]]; Mod[FromDigits[StringJoin[StringReverse[IntegerString[#, 2]] & /@ f], 2], n] == 0];
%t A372277 Select[Range[2, 10^5], a] (* _Robert P. P. McKone_, May 02 2024 *)
%o A372277 (Python)
%o A372277 from itertools import count, islice
%o A372277 from sympy import factorint
%o A372277 def A372277_gen(startvalue=4): # generator of terms >= startvalue
%o A372277     for n in count(max(startvalue,4)):
%o A372277         f = factorint(n)
%o A372277         if sum(f.values()) > 1:
%o A372277             c = 0
%o A372277             for p in sorted(f):
%o A372277                 a = pow(2,len(s:=bin(p)[2:]),n)
%o A372277                 q = int(s[::-1],2)
%o A372277                 for _ in range(f[p]):
%o A372277                     c = (c*a+q)%n
%o A372277             if not c:
%o A372277                 yield n
%o A372277 A372277_list = list(islice(A372277_gen(),3)) # _Chai Wah Wu_, Apr 25 2024
%Y A372277 Cf. A372046, A371821, A371696, A027746.
%K A372277 nonn,base,bref,more
%O A372277 1,1
%A A372277 _Scott R. Shannon_, Apr 25 2024