cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372285 Array read by upward antidiagonals: A(n,k) is the number of terms of A086893 in the interval [b(n, k), b(n+1, k)], n,k >= 1, where b = A372282.

This page as a plain text file.
%I A372285 #16 Apr 28 2024 16:27:45
%S A372285 5,9,4,17,9,7,33,17,13,2,65,33,25,5,4,129,65,49,10,6,3,257,129,97,22,
%T A372285 13,6,6,513,257,193,45,26,14,13,3,1025,513,385,89,54,29,25,4,4,2049,
%U A372285 1025,769,177,109,57,49,9,10,3,4097,2049,1537,353,217,113,97,22,21,6,9,8193,4097,3073,705,433,225,193,45,41,13,17,2
%N A372285 Array read by upward antidiagonals: A(n,k) is the number of terms of A086893 in the interval [b(n, k), b(n+1, k)], n,k >= 1, where b = A372282.
%F A372285 A(n, k) = A372286(A372282(n, k)).
%e A372285 Array begins:
%e A372285 n\k|    1     2      3     4     5     6      7     8      9    10     11
%e A372285 ---+----------------------------------------------------------------------
%e A372285 1  |    5,    4,     7,    2,    4,    3,     6,    3,     4,    3,     9,
%e A372285 2  |    9,    9,    13,    5,    6,    6,    13,    4,    10,    6,    17,
%e A372285 3  |   17,   17,    25,   10,   13,   14,    25,    9,    21,   13,    33,
%e A372285 4  |   33,   33,    49,   22,   26,   29,    49,   22,    41,   26,    65,
%e A372285 5  |   65,   65,    97,   45,   54,   57,    97,   45,    81,   54,   129,
%e A372285 6  |  129,  129,   193,   89,  109,  113,   193,   89,   161,  109,   257,
%e A372285 7  |  257,  257,   385,  177,  217,  225,   385,  177,   321,  217,   513,
%e A372285 8  |  513,  513,   769,  353,  433,  449,   769,  353,   641,  433,  1025,
%e A372285 9  | 1025, 1025,  1537,  705,  865,  897,  1537,  705,  1281,  865,  2049,
%e A372285 10 | 2049, 2049,  3073, 1409, 1729, 1793,  3073, 1409,  2561, 1729,  4097,
%e A372285 11 | 4097, 4097,  6145, 2817, 3457, 3585,  6145, 2817,  5121, 3457,  8193,
%e A372285 12 | 8193, 8193, 12289, 5633, 6913, 7169, 12289, 5633, 10241, 6913, 16385,
%e A372285 etc.
%e A372285 The count includes also the starting and/or ending point, if either of them is a term of A086893. For example, when going from A372282(2,1) = 21 to A372282(3,1) = 5461, we count terms A086893(5..13) = [21, 53, 85, 213, 341, 853, 1365, 3413, 5461], nine in total, therefore A(2,1) = 9.
%e A372285 When going from A371102(1,8) = 15 to A371102(2,8) = 93, we count terms 21, 53, 85 of A086893 in the interval [15, 93], therefore A(1,8) = 3.
%o A372285 (PARI)
%o A372285 up_to = 78;
%o A372285 A086893(n) = (if(n%2, 2^(n+1), 2^(n+1)+2^(n-1))\3); \\ From A086893
%o A372285 A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
%o A372285 A372282sq(n,k) = if(1==n,2*k-1,A371094(A372282sq(n-1,k)));
%o A372285 A372286(n) = { my(u=A371094(n), k1); for(i=1,oo,if(A086893(i)>=n,k1=i-1; break)); for(i=k1,oo,if(A086893(i)>u,return(i-k1-1))); };
%o A372285 A372285sq(n,k) = A372286(A372282sq(n,k));
%o A372285 A372285list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372285sq((a-(col-1)),col))); (v); };
%o A372285 v372285 = A372285list(up_to);
%o A372285 A372285(n) = v372285[n];
%Y A372285 Cf. A086893, A372282, A372286.
%K A372285 nonn,tabl
%O A372285 1,1
%A A372285 _Antti Karttunen_, Apr 27 2024