A372294 The smallest number k which, when written in base n, has a factorization k = f_1*f_2*...*f_r where f_i >= 1 and the digits of {k, f_1, f_2, ..., f_r} together contain the digits 0,1,...,(n-1) exactly once. Set a(n) = -1 if no such k exists.
-1, -1, -1, -1, -1, 104, 440, 1440, 4830, 15552, 72240, 282240, 1039104, 4244940, 24108000
Offset: 2
Examples
a(7) = 104 = 1*4*26 a(8) = 440 = 2*4*5*11 a(9) = 1440 = 3*4*5*24 a(10) = 4830 = 1*2*5*7*69 a(11) = 15552 = 2*3*6*8*54 a(12) = 72240 = 1*4*6*7*430 a(13) = 282240 = 2*3*5*7*21*64 a(14) = 1039104 = 2*3*4*6*8*11*82 a(15) = 4244940 = 1*2*3*7*9*10*1123 a(16) = 24108000 = 3*4*5*7*10*41*140
Formula
a(n) <= A372249(n).
Comments