This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372295 #28 Apr 27 2024 15:36:28 %S A372295 6,10,21,30,42,70,74,94,111,210,222,553,554,611,851,871,885,998,5530, %T A372295 5554,7751,8441,8655,9998,85511,95554,99998,9999998,77744411, %U A372295 5555555554,7777752221,8666666655,755555555554,95555555555554,999999999999998,5555555555555554,8666666666666655,755555555555555554 %N A372295 Composite numbers k such that k's prime factors are distinct, the digits of k are in nonincreasing order while the digits of the concatenation of k's ascending order prime factors are in nondecreasing order. %C A372295 A number 999...9998 will be a term if it has two prime factors 2 and 4999...999. Therefore 999999999999998 and 999...9998 (with 54 9's) are both terms. See A056712. %C A372295 The next term is greater than 10^11. %H A372295 Michael S. Branicky, <a href="/A372295/b372295.txt">Table of n, a(n) for n = 1..40</a> %e A372295 77744411 is a term as 77744411 = 233 * 333667 which has distinct prime factors, 77744411 has nonincreasing digits while its prime factor concatenation "233333667" has nondecreasing digits. %o A372295 (Python) %o A372295 from sympy import factorint, isprime %o A372295 from itertools import count, islice, combinations_with_replacement as mc %o A372295 def nd(s): return s == "".join(sorted(s)) %o A372295 def bgen(d): %o A372295 yield from ("".join(m) for m in mc("9876543210", d) if m[0]!="0") %o A372295 def agen(): # generator of terms %o A372295 for d in count(1): %o A372295 out = set() %o A372295 for s in bgen(d): %o A372295 t = int(s) %o A372295 if t < 4 or isprime(t): continue %o A372295 f = factorint(t) %o A372295 if len(f) < sum(f.values()): continue %o A372295 if nd("".join(str(p) for p in f)): %o A372295 out.add(t) %o A372295 yield from sorted(out) %o A372295 print(list(islice(agen(), 29))) # _Michael S. Branicky_, Apr 26 2024 %Y A372295 Cf. A372308, A372280, A056712, A372034, A372029, A372055, A027746, A372249. %K A372295 nonn,base %O A372295 1,1 %A A372295 _Scott R. Shannon_, Apr 25 2024 %E A372295 a(33)-a(38) from _Michael S. Branicky_, Apr 26 2024