cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372308 Composite numbers k such that the digits of k are in nonincreasing order while the digits of the concatenation of k's ascending order prime factors, with repetition, are in nondecreasing order.

Original entry on oeis.org

4, 6, 8, 9, 10, 20, 21, 30, 32, 40, 42, 50, 54, 60, 63, 64, 70, 72, 74, 75, 80, 81, 84, 90, 92, 94, 96, 98, 100, 111, 200, 210, 222, 300, 320, 333, 400, 420, 432, 441, 444, 500, 531, 540, 553, 554, 600, 611, 630, 632, 640, 666, 700, 711, 720, 750, 752, 800, 810, 840, 851, 864, 871, 875, 882
Offset: 1

Views

Author

Scott R. Shannon, Apr 26 2024

Keywords

Comments

As all the numbers 10,20,...,90,100 are terms, all numbers that are recursively 10 times these values are also terms as they just add an additional 2 and 5 to their parent's prime factor list.
A number 999...9998 will be a term if it has two prime factors 2 and 4999...999. Therefore 999999999999998 and 999...9998 (with 54 9's) are both terms. See A056712.

Examples

			42 is a term as 42 = 2 * 3 * 7, and 42 has nonincreasing digits while its prime factor concatenation "237" has nondecreasing digits.
		

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    from itertools import count, islice, combinations_with_replacement as mc
    def nd(s): return s == "".join(sorted(s))
    def bgen(d):
        yield from ("".join(m) for m in mc("9876543210", d) if m[0]!="0")
    def agen(): # generator of terms
        for d in count(1):
            out = set()
            for s in bgen(d):
                t = int(s)
                if t < 4 or isprime(t): continue
                if nd("".join(str(p)*e for p,e in factorint(t).items())):
                    out.add(t)
            yield from sorted(out)
    print(list(islice(agen(), 65))) # Michael S. Branicky, Apr 26 2024

A373645 The smallest number whose prime factor concatenation, as well as the number itself, when written in base n, contains all digits 0,1,...,(n-1).

Original entry on oeis.org

2, 11, 114, 894, 13155, 127041, 2219826, 44489860, 1023485967, 26436195405, 755182183459, 23609378957430, 802775563829902, 29480898988179429, 1162849454580682365
Offset: 2

Views

Author

Scott R. Shannon, Jun 12 2024

Keywords

Comments

For base 2 and base 3 the number is prime; are there other bases where this is also true?

Examples

			a(5) = 894 = 12034_5 which contains all the digits 0..4, and 894 = 2 * 3 * 149 = 2_5 * 3_5 * 1044_5, and the factors contain all digits 0..4.
a(10) = 1023485967 which contains all digits 0..9, and 1023485967 = 3 * 3 * 7 * 16245809, and the factors contain all digits 0..9.
a(15) = 29480898988179429 = 102345C86EA7BD9_15 which contains all the digits 0..E, and 29480898988179429 = 3 * 7 * 17 * 139 * 594097474723 = 3_15 * 7_15 * 12_15 * 94_15 * 106C1A8B5ED_15, and the factors contain all digits 0..E.
		

Crossrefs

A374225 Irregular triangle read by rows: T(n,k), n > 1 and k <= n, is the smallest composite number x whose set of digits and the set of digits in all prime factors of x, when written in base n, contain exactly k digits in common, or -1 if no such number exists.

Original entry on oeis.org

-1, 9, 4, 4, 8, 6, 15, 4, 6, 14, 30, 114, 4, 12, 10, 35, 190, 894, 4, 8, 33, 188, 377, 2355, 13155, 4, 16, 14, 66, 462, 3269, 22971, 127041, 4, 10, 66, 85, 762, 5359, 36526, 279806, 2219826, 4, 12, 39, 102, 1118, 9096, 62959, 572746, 5053742, 44489860, 4, 12, 95, 132
Offset: 2

Views

Author

Jean-Marc Rebert, Jul 01 2024

Keywords

Examples

			T(2, 1) = 9 = 3^2 -> 1001_2 = 11_2^2, have the digit 1 in common, and no lesser composite has this property.
T(6, 2) = 33 = 3 * 11 -> 53_6 = 3_6 * 15_6, have this 2 digits 3 and 5 in common, and no lesser composite has this property.
T(11, 6) = 174752 = 2^5 * 43 * 127 -> 10A326_11 = 2_11^5 * 3A_11 * 106_11, have the 6 digits 0, 1, 2, 3, 6 and A in common, and no lesser composite has this property.
The array begins:
  n\k:0,  1,  2,   3,    4,     5,    6,
  2: -1,  9,  4;
  3:  4,  8,  6,  15;
  4:  4,  6, 14,  30,  114;
  5:  4, 12, 10,  35,  190,   894;
  6:  4,  8, 33, 188,  377,  2355, 13155;
		

Crossrefs

Programs

  • PARI
    card(base,x)=my(m=factor(x),u=[],v=[],w=[]);my(u=Set(digits(x,base)));for(i=1,#m~,w=Set(digits(m[i,1],base));v=setunion(v,w));#setintersect(u,v)
    T(n,k)=my(x);if(k>n,return(0));if(n==2&&k==0,return(-1));forcomposite(m=max(2,n^(k-1)),oo,x=card(n,m);if(x==k,return(m)))
Showing 1-3 of 3 results.