This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372302 #28 May 12 2024 11:18:21 %S A372302 6,19,27,40,53,61,74,82,95,108,116,129,142,150,163,171,184,197,205, %T A372302 218,226,239,252,260,273,286,294,307,315,328,341,349,362,375,383,396, %U A372302 404,417,430,438,451,459,472,485,493,506,519,527,540,548,561,574,582,595,603 %N A372302 Numbers k for which the Zeckendorf representation A014417(k) ends with "1001". %H A372302 A.H.M. Smeets, <a href="/A372302/b372302.txt">Table of n, a(n) for n = 1..20000</a> %F A372302 Equals {A134859}\{A151915}. %F A372302 a(n) = A134863(n) - 1 = A035338(n) + 1. %F A372302 a(n) = a(n-1) + 8 + 5*A005614(n-2) = a(n-1) + F(6) + F(5)*A005614(n-2), n > 1, where F(k) is the k-th Fibonacci number (A000045). %Y A372302 Cf. A000045, A005614, A014417. %Y A372302 Tree of Zeckendorf subsequences of positive integers partitioned by their suffix part S (except initial term or offset in some cases). $ is the empty string. length(S) = %Y A372302 0 1 2 3 4 5 6 7 %Y A372302 ---------------------------------------------------------------------- %Y A372302 $: 0: 00: 000: 0000: 00000: 000000: %Y A372302 A000027 A022342 A026274 A101345 A101642 notOEIS notOEIS %Y A372302 100000: 0100000: %Y A372302 A035340 <------ %Y A372302 10000: %Y A372302 A035339 %Y A372302 1000: 01000: %Y A372302 A035338 <------ %Y A372302 10: 010: 0010: %Y A372302 A035336 <------ A134861 %Y A372302 1010: 01010: %Y A372302 A134863 <------ %Y A372302 100: 0100: %Y A372302 A035337 <------ %Y A372302 1: 01: 001: 0001: %Y A372302 A003622 <------ A134859 A151915 %Y A372302 1001: 01001: %Y A372302 A372302 <------ %Y A372302 101: 0101: %Y A372302 A134860 <------ %Y A372302 Suffixes 10^n, where ^ means n times repeated concatenation, are the (n+1)-th columns in the Wythoff array A083412 and A035513 (n >= 0). %K A372302 nonn %O A372302 1,1 %A A372302 _A.H.M. Smeets_, Apr 25 2024