This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372306 #91 Sep 04 2025 09:31:12 %S A372306 1,2,3,4,5,5,6,6,6,7,8,8,9,10,10,10,11,11,12,12,13,13,14,15,15,16,17, %T A372306 18,19,19,20,20,20,21,21,21,22,23,23,24,25,26,27,28,29,30,31,31,31,31, %U A372306 32,33,34,34,34,35,36,37,38,39,40,41,42,42,42,43,44,45,46 %N A372306 Cardinality of the largest subset of {1,...,n} such that no three distinct elements of this subset multiply to a square. %C A372306 a(n) >= A373114(n). %C A372306 a(n) ~ n (Erdős-Sárközy-Sós). %C A372306 a(n+1)-a(n) is either 0 or 1 for any n. %C A372306 If "three" is replaced by "two" one obtains A013928. If "three" is replaced by "one", one obtains A028391. If "three" is replaced by "any odd", one obtains A373114. %H A372306 Jinyuan Wang, <a href="/A372306/b372306.txt">Table of n, a(n) for n = 1..200</a> %H A372306 Thomas Bloom, <a href="https://www.erdosproblems.com/121">Problem 121</a>, Erdős Problems. %H A372306 David A. Corneth, <a href="/A372306/a372306.gp.txt">PARI program</a> %H A372306 Paul Erdős, Andràs Sárközy, and Vera T. Sós, <a href="https://doi.org/10.1016/0195-6698(95)90039-X">On Product Representations of Powers, I</a>, Europ. J. Combinatorics 16 (1995), 567--588. %H A372306 Terence Tao, <a href="https://arxiv.org/abs/2405.11610">On product representations of squares</a>, arXiv:2405.11610 [math.NT], May 2024. %H A372306 Terence Tao, <a href="https://github.com/teorth/erdosproblems/blob/main/README.md#table">Erdős problem database</a>, see no. 121. %F A372306 From _David A. Corneth_, May 29 2024: (Start) %F A372306 a(k^2) = a(k^2 - 1) for k >= 3. %F A372306 a(p) = a(p - 1) + 1 for prime p. (End) %e A372306 a(7)=6, because the set {1,2,3,4,5,7} has no three distinct elements multiplying to a square, but {1,2,3,4,5,6,7} has 2*3*6 = 6^2. %o A372306 (Python) %o A372306 from math import isqrt %o A372306 def is_square(n): %o A372306 return isqrt(n) ** 2 == n %o A372306 def valid_subset(A): %o A372306 length = len(A) %o A372306 for i in range(length): %o A372306 for j in range(i + 1, length): %o A372306 for k in range(j + 1, length): %o A372306 if is_square(A[i] * A[j] * A[k]): %o A372306 return False %o A372306 return True %o A372306 def largest_subset_size(N): %o A372306 from itertools import combinations %o A372306 max_size = 0 %o A372306 for size in range(1, N + 1): %o A372306 for subset in combinations(range(1, N + 1), size): %o A372306 if valid_subset(subset): %o A372306 max_size = max(max_size, size) %o A372306 return max_size %o A372306 for N in range(1, 11): %o A372306 print(largest_subset_size(N)) %o A372306 (Python) %o A372306 from math import prod %o A372306 from functools import lru_cache %o A372306 from itertools import combinations %o A372306 from sympy.ntheory.primetest import is_square %o A372306 @lru_cache(maxsize=None) %o A372306 def A372306(n): %o A372306 if n==1: return 1 %o A372306 i = A372306(n-1)+1 %o A372306 if sum(1 for p in combinations(range(1,n),2) if is_square(n*prod(p))) > 0: %o A372306 a = [set(p) for p in combinations(range(1,n+1),3) if is_square(prod(p))] %o A372306 for q in combinations(range(1,n),i-1): %o A372306 t = set(q)|{n} %o A372306 if not any(s<=t for s in a): %o A372306 return i %o A372306 else: %o A372306 return i-1 %o A372306 else: %o A372306 return i # _Chai Wah Wu_, May 30 2024 %o A372306 (PARI) \\ See PARI link %Y A372306 Cf. A013928, A028391, A373114, A373119, A373178, A373195. %K A372306 nonn,changed %O A372306 1,2 %A A372306 _Terence Tao_, May 25 2024 %E A372306 a(18)-a(36) from _Michael S. Branicky_, May 25 2024 %E A372306 a(37)-a(38) from _Michael S. Branicky_, May 26 2024 %E A372306 a(39)-a(63) from _Martin Ehrenstein_, May 26 2024 %E A372306 a(64)-a(76) from _David A. Corneth_, May 29 2024, May 30 2024