This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372307 #23 Aug 27 2024 14:51:20 %S A372307 1,1,1,1,0,1,1,1,0,1,1,2,1,0,1,1,9,10,1,0,1,1,44,297,56,1,0,1,1,265, %T A372307 13756,13833,346,1,0,1,1,1854,925705,6699824,748521,2252,1,0,1,1, %U A372307 14833,85394646,5691917785,3993445276,44127009,15184,1,0,1 %N A372307 Square array read by antidiagonals: T(n,k) is the number of derangements of a multiset comprising n repeats of a k-element set. %C A372307 A deck has k suits of n cards each. The deck is shuffled and dealt into k hands of n cards each. A match occurs for every card in the i-th hand of suit i. T(n,k) is the number of ways of achieving no matches. The probability of no matches is T(n,k)/((n*k)!/n!^k). %C A372307 T(n,k) is the maximal number of totally mixed Nash equilibria in games of k players, each with n+1 pure options. %H A372307 Jeremy Tan, <a href="/A372307/b372307.txt">Antidiagonals n = 0..32, flattened</a> %H A372307 Shalosh B. Ekhad, Christoph Koutschan and Doron Zeilberger, <a href="https://arxiv.org/abs/2101.10147">There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts]</a>, arXiv:2101.10147 [math.CO], 2021. %H A372307 S. Even and J. Gillis, <a href="https://doi.org/10.1017/S0305004100052154">Derangements and Laguerre polynomials</a>, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143. %H A372307 B. H. Margolius, <a href="https://www.jstor.org/stable/3219303">The Dinner-Diner Matching Problem</a>, Mathematics Magazine, 76 (2003), pp. 107-118. %H A372307 Jeremy Tan, <a href="https://gist.github.com/Parcly-Taxel/4c072993b7ae0aa9c165a5c779aef021">Python program</a> %H A372307 Raimundas Vidunas, <a href="https://arxiv.org/abs/1401.5400">MacMahon's master theorem and totally mixed Nash equilibria</a>, arXiv:1401.5400 [math.CO], 2014. %H A372307 Raimundas Vidunas, <a href="https://doi.org/10.1007/s00026-017-0344-2">Counting derangements and Nash equilibria</a>, Ann. Comb. 21, No. 1, 131-152 (2017). %H A372307 <a href="/index/Ca#cardmatch">Index entries for sequences related to card matching</a> %F A372307 T(n,k) = (-1)^(n*k) * Integral_{x=0..oo} exp(-x)*L_n(x)^k dx, where L_n(x) is the Laguerre polynomial of degree n (Even and Gillis). %F A372307 T(n,k) ~ A089759(n,k)/exp(n). %e A372307 Square array T(n,k) begins: %e A372307 1, 1, 1, 1, 1, 1, ... %e A372307 1, 0, 1, 2, 9, 44, ... %e A372307 1, 0, 1, 10, 297, 13756, ... %e A372307 1, 0, 1, 56, 13833, 6699824, ... %e A372307 1, 0, 1, 346, 748521, 3993445276, ... %e A372307 1, 0, 1, 2252, 44127009, 2671644472544, ... %e A372307 1, 0, 1, 15184, 2750141241, 1926172117389136, ... %e A372307 1, 0, 1, 104960, 178218782793, 1463447061709156064, ... %p A372307 A:= (n, k)-> (-1)^(n*k)*int(exp(-x)*orthopoly[L](n, x)^k, x=0..infinity): %p A372307 seq(seq(A(n, d-n), n=0..d), d=0..10); # _Alois P. Heinz_, Aug 27 2024 %t A372307 Table[Abs[Integrate[Exp[-x] LaguerreL[n, x]^(s-n), {x, 0, Infinity}]], {s, 0, 9}, {n, 0, s}] // Flatten %o A372307 (Python) # See link. %Y A372307 Rows 0-5 give A000012, A000166, A000459, A059073, A059074, A123297. %Y A372307 Columns 0-4 give A000012, A000007, A000012, A000172, A371252. %Y A372307 Main diagonal gives A375778. %K A372307 nonn,tabl %O A372307 0,12 %A A372307 _Jeremy Tan_, Apr 26 2024