A372308 Composite numbers k such that the digits of k are in nonincreasing order while the digits of the concatenation of k's ascending order prime factors, with repetition, are in nondecreasing order.
4, 6, 8, 9, 10, 20, 21, 30, 32, 40, 42, 50, 54, 60, 63, 64, 70, 72, 74, 75, 80, 81, 84, 90, 92, 94, 96, 98, 100, 111, 200, 210, 222, 300, 320, 333, 400, 420, 432, 441, 444, 500, 531, 540, 553, 554, 600, 611, 630, 632, 640, 666, 700, 711, 720, 750, 752, 800, 810, 840, 851, 864, 871, 875, 882
Offset: 1
Examples
42 is a term as 42 = 2 * 3 * 7, and 42 has nonincreasing digits while its prime factor concatenation "237" has nondecreasing digits.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..884 (terms 1..458 from Scott R. Shannon; all terms < 10^18)
Programs
-
Python
from sympy import factorint, isprime from itertools import count, islice, combinations_with_replacement as mc def nd(s): return s == "".join(sorted(s)) def bgen(d): yield from ("".join(m) for m in mc("9876543210", d) if m[0]!="0") def agen(): # generator of terms for d in count(1): out = set() for s in bgen(d): t = int(s) if t < 4 or isprime(t): continue if nd("".join(str(p)*e for p,e in factorint(t).items())): out.add(t) yield from sorted(out) print(list(islice(agen(), 65))) # Michael S. Branicky, Apr 26 2024
Comments