cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372309 The smallest number whose prime factor concatenation, when written in base n, contains all digits 0,1,...,(n-1).

This page as a plain text file.
%I A372309 #51 Jan 09 2025 19:12:57
%S A372309 2,6,38,174,2866,11670,135570,1335534,15618090,155077890,5148702870,
%T A372309 31771759110,774841780230,11924858870610,253941409789410,
%U A372309 3867805835651310
%N A372309 The smallest number whose prime factor concatenation, when written in base n, contains all digits 0,1,...,(n-1).
%C A372309 Up to a(12) all terms have prime factors whose concatenation length in base n is n, the minimum possible value. Is this true for all a(n)?
%C A372309 a(13) <= 31771759110 = 2*3*5*7*13*61*190787 whose prime factors in base 13 are: 2, 3, 5, 7, 10, 49, 68abc. Sequence is a subsequence of A058760. - _Chai Wah Wu_, Apr 28 2024
%C A372309 From _Chai Wah Wu_, Apr 29 2024: (Start)
%C A372309 a(14) <= 1138370792790 = 2*3*5*7*11*877*561917 whose prime factors in base 14 are: 2, 3, 5, 7, b, 469, 108acd.
%C A372309 a(15) <= 23608327052310 = 2*3*5*7*11*13*233*3374069 whose prime factors in base 15 are: 2, 3, 5, 7, b, d, 108, 469ace. (End)
%C A372309 a(14) <= 774841780230, a(15) <= 11924858870610, a(16) <= 256023548755170, a(17) <= 4286558044897590. - _Daniel Suteu_, Apr 30 2024
%C A372309 For n <= 36, all terms have prime factors whose concatenation length in base n is n, the minimum possible value. - _Dominic McCarty_, Jan 07 2025
%H A372309 Dominic McCarty, <a href="https://www.youtube.com/watch?v=9SbKjmu-__w">Numbers Whose Prime Factorizations Have Every Digit (OEIS A372309)</a>, YouTube video (2024).
%H A372309 Dominic McCarty, <a href="/A372309/a372309.txt">Java program for A372309</a>
%H A372309 Dominic McCarty, <a href="/A372309/a372309_1.txt">Bounds on a(n) for n <= 36</a>
%F A372309 a(n) >= n!. - _Michael S. Branicky_, Apr 28 2024
%F A372309 a(n) <= A185122(n). - _Michael S. Branicky_, Apr 28 2024
%e A372309 The factorizations to a(12) are:
%e A372309 a(2) = 2 = 10_2, which contains all digits 0..1.
%e A372309 a(3) = 6 = 2 * 3 = 2_3 * 10_3, which contain all digits 0..2.
%e A372309 a(4) = 38 = 2 * 19 = 2_4 * 103_4, which contain all digits 0..3.
%e A372309 a(5) = 174 = 2 * 3 * 29 = 2_5 * 3_5 * 104_5, which contain all digits 0..4.
%e A372309 a(6) = 2866 = 2 * 1433 = 2_6 * 10345_6, which contain all digits 0..5.
%e A372309 a(7) = 11670 = 2 * 3 * 5 * 389 = 2_7 * 3_7 * 5_7 * 1064_7, which contain all digits 0..6.
%e A372309 a(8) = 135570 = 2 * 3 * 5 * 4519 = 2_8 * 3_8 * 5_8 * 10647_8, which contain all digits 0..7.
%e A372309 a(9) = 1335534 = 2 * 3 * 41 * 61 * 89 = 2_9 * 3_9 * 45_9 * 67_9 * 108_9, which contain all digits 0..8.
%e A372309 a(10) = 15618090 = 2 * 3 * 5 * 487 * 1069, which contain all digits 0..9. See A058909.
%e A372309 a(11) = 155077890 = 2 * 3 * 5 * 11 * 571 * 823 = 2_11 * 3_11 * 5_11 * 10_11 * 47a_11 * 689_11, which contain all digits 0..a.
%e A372309 a(12) = 5148702870 = 2 * 3 * 5 * 151 * 1136579 = 2_12 * 3_12 * 5_12 * 107_12 * 4698ab_12, which contain all digits 0..b.
%o A372309 (Python)
%o A372309 from math import factorial
%o A372309 from itertools import count
%o A372309 from sympy import factorint
%o A372309 from sympy.ntheory import digits
%o A372309 def a(n):
%o A372309     for k in count(factorial(n)):
%o A372309         s = set()
%o A372309         for p in factorint(k): s.update(digits(p, n)[1:])
%o A372309         if len(s) == n: return k
%o A372309 print([a(n) for n in range(2, 10)]) # _Michael S. Branicky_, Apr 28 2024
%Y A372309 Cf. A372249, A371993, A027746, A371958, A058909, A185122, A058760.
%K A372309 nonn,base,more
%O A372309 2,1
%A A372309 _Scott R. Shannon_, Apr 26 2024
%E A372309 a(13)-a(16) from _Martin Ehrenstein_, May 03 2024
%E A372309 a(17) from _Dominic McCarty_, Jan 07 2025