This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372311 #10 Apr 27 2024 03:32:12 %S A372311 1,1,1,1,6,8,1,21,108,162,1,60,800,3840,6144,1,155,4500,48750,225000, %T A372311 375000,1,378,21672,453600,4354560,19595520,33592320,1,889,94668, %U A372311 3500658,60505200,536479440,2371803840,4150656720 %N A372311 Triangle read by rows: T(n, k) = n^k * Sum_{j=0..n} binomial(n - j, n - k) * Eulerian1(n, j). %e A372311 Triangle begins: %e A372311 [0] 1; %e A372311 [1] 1, 1; %e A372311 [2] 1, 6, 8; %e A372311 [3] 1, 21, 108, 162; %e A372311 [4] 1, 60, 800, 3840, 6144; %e A372311 [5] 1, 155, 4500, 48750, 225000, 375000; %e A372311 [6] 1, 378, 21672, 453600, 4354560, 19595520, 33592320; %e A372311 [7] 1, 889, 94668, 3500658, 60505200, 536479440, 2371803840, 4150656720; %p A372311 S := (n, k) -> local j; add(eulerian1(n, j)*binomial(n-j, n-k), j = 0..n): %p A372311 row := n -> local k; seq(S(n, k) * n^k, k = 0..n): %p A372311 seq(row(n), n = 0..8); %o A372311 (SageMath) %o A372311 def A372311_row(n) : %o A372311 x = polygen(ZZ, 'x') %o A372311 A = [] %o A372311 for m in range(0, n + 1, 1) : %o A372311 A.append((-x)^m) %o A372311 for j in range(m, 0, -1): %o A372311 A[j - 1] = j * (A[j - 1] - A[j]) %o A372311 return [n^k*c for k, c in enumerate(A[0])] %o A372311 for n in (0..7) : print(A372311_row(n)) %Y A372311 Cf. A061711 (main diagonal), A066524 (column 1), A372312 (row sums). %Y A372311 Cf. A163626, A173018 (eulerian1). %K A372311 nonn,tabl %O A372311 0,5 %A A372311 _Peter Luschny_, Apr 26 2024