A372322 a(n) = A010846(A372111(n)).
1, 2, 5, 6, 5, 11, 18, 8, 16, 22, 5, 28, 13, 33, 23, 38, 11, 26, 12, 9, 58, 28, 80, 5, 30, 55, 19, 27, 19, 56, 37, 21, 27, 87, 44, 44, 48, 38, 18, 58, 42, 5, 110, 26, 112, 140, 38, 45, 32, 144, 102, 59, 5, 139, 225, 39, 44, 22, 180, 86, 114, 34, 23, 133, 41, 115
Offset: 1
Keywords
Examples
Let s(x) = A372111(x) and let r(x) = A010846(x). a(1) = 1 since r(s(1)) = r(1) = 1. a(2) = 2 since r(s(2)) = r(3) = 2. For prime p, r(p) = card({1, p}) = 2. a(3) = 5 since r(s(3)) = r(6) = 5. r(6) = card({1, 2, 3, 4, 6}) = 5. a(4) = 6 since r(s(4)) = r(10) = 6. r(10) = card({1, 2, 4, 5, 8, 10}) = 6. a(5) = 5 since r(s(5)) = r(15) = 5. r(15) = card({1, 3, 5, 9, 15}) = 5. a(6) = 11 since r(s(6)) = r(24) = 11. r(24) = card({1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24}) = 11, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 68; c[_] := False; rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; f[x_] := Select[Range[x], Divisible[x, rad[#]] &]; Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2]; {1}~Join~Reap[Do[r = f[s]; k = SelectFirst[r, ! c[#] &]; Sow[Length[r]]; c[k] = True; s += k, {i, 3, nn}] ][[-1, 1]]
Comments