cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A372322 a(n) = A010846(A372111(n)).

Original entry on oeis.org

1, 2, 5, 6, 5, 11, 18, 8, 16, 22, 5, 28, 13, 33, 23, 38, 11, 26, 12, 9, 58, 28, 80, 5, 30, 55, 19, 27, 19, 56, 37, 21, 27, 87, 44, 44, 48, 38, 18, 58, 42, 5, 110, 26, 112, 140, 38, 45, 32, 144, 102, 59, 5, 139, 225, 39, 44, 22, 180, 86, 114, 34, 23, 133, 41, 115
Offset: 1

Views

Author

Michael De Vlieger, May 05 2024

Keywords

Comments

Let r(x) = A010846(x), the number of m <= x such that rad(m) | x, where rad = A007947.
Let row k of A162306 contain { m : rad(m) | k, m <= k }. Thus r(k) is the length of row k of A162306.
a(n) is the length of row A372111(n) of A162306.
Analogous to A371909, which instead regards A109890 and A109735.

Examples

			Let s(x) = A372111(x) and let r(x) = A010846(x).
a(1) = 1 since r(s(1)) = r(1) = 1.
a(2) = 2 since r(s(2)) = r(3) = 2. For prime p, r(p) = card({1, p}) = 2.
a(3) = 5 since r(s(3)) = r(6) = 5. r(6) = card({1, 2, 3, 4, 6}) = 5.
a(4) = 6 since r(s(4)) = r(10) = 6. r(10) = card({1, 2, 4, 5, 8, 10}) = 6.
a(5) = 5 since r(s(5)) = r(15) = 5. r(15) = card({1, 3, 5, 9, 15}) = 5.
a(6) = 11 since r(s(6)) = r(24) = 11. r(24) = card({1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24}) = 11, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 68; c[_] := False;
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    f[x_] := Select[Range[x], Divisible[x, rad[#]] &];
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    {1}~Join~Reap[Do[r = f[s]; k = SelectFirst[r, ! c[#] &];
      Sow[Length[r]]; c[k] = True;
      s += k, {i, 3, nn}] ][[-1, 1]]
Showing 1-1 of 1 results.