This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372325 #28 May 28 2024 18:27:32 %S A372325 0,2,5,7,8,10,13,15,16,18,21,23,24,26,29,31,33,35,36,38,41,43,44,46, %T A372325 49,51,52,54,57,59,60,62,64,66,69,71,72,74,77,79,80,82,85,87,88,90,93, %U A372325 95,97,99,100,102,105,107,108,110,113,115,116,118,121,123,124 %N A372325 Numbers whose binary expansion has an even number of 1's among positions listed in this sequence. %H A372325 Robert Israel, <a href="/A372325/b372325.txt">Table of n, a(n) for n = 1..10000</a> %e A372325 118 is in the sequence because 118 = 2^6 + 2^5 + 2^4 + 2^2 + 2^1, and an even number of the exponents 6,5,4,2,1 (namely 2,5) are in the sequence. %e A372325 8192 is not in the sequence because 8192 = 2^13, and 13 is in the sequence. %p A372325 R:= 0: RL:= [1]: nextp:= 2: m:= 1: count:= 0: %p A372325 for i from 1 while count < 100 do %p A372325 L:= convert(i,base,2); %p A372325 if i = nextp then %p A372325 nextp:= 2*nextp; %p A372325 if R[1+nops(RL)] = m then RL:= [op(RL),m+1] fi; %p A372325 m:= m+1; %p A372325 fi; %p A372325 if convert(L[RL],`+`)::even %p A372325 then R:= R,i; count:= count+1 %p A372325 fi %p A372325 od: %p A372325 R; # _Robert Israel_, May 28 2024 %o A372325 (Python) %o A372325 from itertools import count, islice %o A372325 def agen(): # generator of terms %o A372325 aset = 0 # stored as a bitmask %o A372325 for k in count(0): %o A372325 if (k&aset).bit_count()%2 == 0: %o A372325 yield k %o A372325 aset += (1<<k) %o A372325 print(list(islice(agen(), 63))) # _Michael S. Branicky_, Apr 28 2024 %Y A372325 Cf. A133457, A272011. %K A372325 nonn,easy,base %O A372325 1,2 %A A372325 _David A. Madore_, Apr 27 2024